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a b s t r a c t

Two-dimensional triaxially braided composites (2DTBCs) are attractive in crashworthiness
design because their fracture can dissipate a significantly larger amount of impact energy
than other light-weight materials. This paper aims at predicting the fracture energy, Gf,
and the effective length of the fracture process zone, cf, of 2DTBC composites. Since the
fracture parameters are best manifested in the scaling properties and are the main param-
eters in the size effect law, the nominal strengths of three geometrically similar notched
beams of three different sizes are simulated in a 3D finite element framework. The
simulations are run for three different bias tow angles: 30�, 45� and 60�. Continuum beam
elements in front of the notch are replaced with repetitive unit cells (RUCs), which
represent the 2DTBC’s mesostructure, and are located in the region of potential cracking.
Multiscale simulations, incorporating damage mechanics, are used to predict the pre- and
post-peak response from three-point bending tests. Nominal stresses are calculated from
the predicted peak loads and used to fit the size effect law. The dimensionless energy
release rate function g(a) is determined from the J-integral. The values of Gf and cf are then
determined using g(a) and the size effect law. With some exceptions, the results in
general match well with the results of size effect experiments, and particularly the strong
size effect observed in the tests.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction and objective

Two-dimensional triaxially braided composites (2DTBCs), fabricated from carbon fiber tows and bound by epoxy matrix,
can exhibit high fracture energies [1]. This makes them highly desirable for energy dissipating structures. To maximize the
energy dissipation, the material and geometric properties must be optimized. This task is facilitated by developing a good
computational model that reduces the need for time-consuming experiments.
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Modeling of 2DTBCs by finite elements (FE) has led to progress, but challenges remain. Previous FE simulations have been
performed on heterogeneous woven composites [2,3] and on 2DTBCs [4–7]. The compressive fracturing of 2DTBC tubular
structures has been analyzed but without reference to the mesostructure of braided tows and polymer [8,9].

Although realistic mesostructure-based analysis of large composite structures poses excessive computational demands,
for smaller structures it is feasible; cf. [10]. The multiscale methods allow, in principle, a more realistic representation of
the macroscale material properties but are controversial in the case of localization of softening damage, with the associated
characteristic length and size effects [12,13].

One of the first classes of multiscale models relies on the concept of a ‘‘hierarchical’’ scale representation and scale sep-
aration [14,15]. In these models, information derived from the simulation of a subscale is passed in the form of a constitutive
law or a homogenized property back into a macroscale continuum point, typically to the integration point of a finite element.
On the subscale, periodic boundary conditions are an effective common choice. They can be further enhanced with strain
gradients [15].

Such an approach, in which a subscale model is embedded in a macro-continuum point, is suitable for elastic and plastic
hardening behavior but is unjustified for the prediction of softening fracturing behavior purely from the subscale. The prob-
lem arises due to the fact that the damage localization and the associated material characteristic length on both the macro-
scale and the subscale are incompatible with the assumed boundary conditions and the characteristic length must be
assumed, rather than predicted from the subscale, which defeats the purpose of the multiscale approach.

Another class of multiscale models, which has been termed as ‘‘concurrent’’, e.g. [16–18], leads to a simultaneous solution
of an equation system, although the system can, of course, be further decomposed for multiple processing [19,20] or can con-
tain a weak form of displacement continuity between scales enforced by Lagrange multipliers [10,18]. In the concurrent
models, a macroscale region of potential softening is replaced by a system of unit cells from the subscale. These cells describe
the fracturing process on the subscale in a way that automatically reproduces damage localization as it develops in interac-
tion with the rest of the structure. The salient feature of this approach is that it implies the material characteristic length.

In this paper, we apply a variant of the ‘‘concurrent’’ multiscale method, which correctly predicts energy dissipation and
material characteristic length purely from the mesostructure. This method is applicable to all simulations where the crack
path is known a priori. Macroscale elements in the location where the crack will propagate are replaced with the full meso-
scale representation before the computation. In the present simulations, several RUCs are embedded in front of the notch.
The simulations are used to predict the peak loads, which are then used to fit and calibrate the size effect law [12]. The frac-
ture energy Gf and the effective process zone size cf are then determined from the J-integral and the size effect law.

In a parallel study, the present problem is analyzed by approximating the fracturing of a unit cell of the mesostructure
with the microplane model [21]. The microplane approach is more effective for large scale simulations of braided composite
structures, while the present approach gives a more detailed picture of the local fracturing behavior and a better identifica-
tion of fracture energy from size effect tests.

2. Multiscale analysis

Fig. 1 shows three scales used in the multiscale simulation of notched beams; micro, meso and macro.

2.1. Microscale

The microscale discerns inhomogeneities below 5 mm, which include the individual carbon fibers connected by epoxy
resin. The elastic properties of the axial and bias (or braider) tows are determined by the rule-of-mixtures (other models
such as the concentric cylinder model at the microscale are more commonplace) as a combination of elastic constants of
the fibers and epoxy matrix;

Gf ;m ¼
Ef ;m

2ð1þ mf ;mÞ
; ð1Þ

E0m ¼
Em

1� m2
m
; ð2Þ

E11 ¼ Vf Ef þ VmEm; ð3Þ

E22 ¼ E33 ¼
Vf

Ef
þ Vm

E0m

� ��1

; ð4Þ

m12 ¼ m13 ¼ Vf mf þ Vmmm; ð5Þ

m23 ¼
Vf

mf
þ Vm

mm

� ��1

; ð6Þ

G12 ¼ G13 ¼
Vf

Gf
þ Vm

Gm

� ��1

; ð7Þ

where subscript 11 refers to the direction aligned with the fibers.
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The elastic properties assigned to the RUC components are summarized in Table 1. The material input data and geome-
tries are based on experiments carried out at the University of Michigan [1,22].

2.2. Mesoscale

The RUC geometry on the mesoscale needs to be fully described. The RUC is composed of axial fiber tows, bias (or braider)
fiber tows inclined at a certain angle /, pure matrix tows and connecting truss (or bar) elements; see Figs. 2, 3 and 4 (and for
a justification of the use of truss elements, see Section 2.3). In Fig. 3, a plan view of half the RUC is provided to show the
layout of the truss elements (an isometric or oblique view would be useless because of an extremely small gap between
the axial and bias tows). The colors of tows were also changed so the layout of the truss elements could be seen more clearly.
Due to textile design, all the tows are undulated. For the RUC to be periodically repetitive, the RUC must accommodate one
full wave of the undulation, which may be idealized as approximately sinusoidal. The pure matrix tows represent the matrix
(polymeric resin) between the axial tows. The truss elements approximate the connections between the axial and bias tows,
provided by the matrix at the peaks and valleys of the bias tow undulations. The size of the RUC for each bias tow angle is
shown in Fig. 2.

The axial and inclined bias tows terminate with cross sections that are orthogonal to the fiber direction, which makes it
possible to capture the fact that, within the tows, the cracks form in either normal or parallel planes, but not in planes in-
clined to the fiber direction. As a result, the RUC has non-smooth boundaries with protrusions and indentations. In spite of
that, the RUC is periodically repetitive in axial, lateral and out-of-plane directions.

Fig. 4 presents a typical RUC with the bias tow angle of / = 30�. The figure further shows, from left to right, the biased fiber
tows, the biased and axial fiber tows, and the tows with pure matrix pockets. Although the actual cross sections of the tows
are lenticular of varying distortions, needed to accommodate the tow crossings, for the sake of simplicity they are assumed
to be rectangular with a constant aspect ratio while preserving the correct cross sectional area. For this reason, the tow
geometry implies some inter-penetrations as well as some open spaces. However, this does not matter from the mechanics
viewpoint, since the tow volume, stiffness and centerline geometry are preserved.

The bias tows are firmly connected by the polymer resin to the axial tows at the peaks and valleys of the bias tow undu-
lations. The connections resist out-of-plane forces (including those from tow buckling), in-plane shear deformations and

Fig. 1. Macro, meso and microscale of the problem.

Table 1
Elastic properties assigned to bias tows and epoxy matrix, the moduli are in GPa. Results computed by the rule-of-
mixture.

Bias tow angle / 30� 45� 60�

Carbon fiber Ef = 231a GPa, mf = 0.14 ? Gf = 101.32 GPa

Epoxy resin Em = 7.52b GPa, mm = 0.36 ? Gm = 2.76 GPa

Axial tows Vf 0.77 0.64 0.62
E11 179.6 150.3 146.1
E22 = E33 33.38 22.45 21.43
m12 = m13 0.191 0.219 0.224
m23 0.163 0.180 0.182
G12 = G13 11.01 7.31 6.97

Bias tows Vf 0.71 0.56 0.54
E11 165.7 132.9 128.4
E22 = E33 27.13 18.78 18.03
m12 = m13 0.204 0.237 0.241
m23 0.170 0.191 0.195
G12 = G13 8.88 6.09 5.84

a According to [6].
b Resin modulus reported 7.52 [4] and in the range 2.0–9.05 GPa [22]. Less relevant sources report 3.72 [6], 2.76

[23], 3.5 [8], and 2.9 GPa [24].
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in-plane tow rotations caused by loads. For simplicity, each of these connections is represented by a collection of truss ele-
ments (or bars) which connect specific nodes on the axial tows to nodes on the contacting bias tows (see also Section 2.3).
Each truss element is assumed to behave as an elastic-damaging spring. The cross-sectional area of the truss elements (bars)
can be arbitrarily chosen since their elastic stiffness and strength are the subject of calibration. Although the truss element
stiffness must be calibrated empirically, the same stiffness may be used for various bias tow angles and undulation
amplitudes.

The fact that here the tow cross sections and the pure matrix are not subdivided into many finite elements greatly reduces
the computational burden while still capturing the essential physical behavior. Each RUC contains 987 nodes with 2961 de-
grees of freedom, 96 20-node quadratic brick elements and 166 truss elements (or bars). The rectangular dimensions of the
tows are given in Table 2.

2.3. Should not the matrix between the tows be subdivided into many finite elements?

Many researchers would be tempted to answer yes. However, for softening damage and fracture, such a subdivision is
normally counterproductive.

A subdivision of the pure matrix between the tows into many finite elements would lead to difficult, yet unresolved, prob-
lems in the modeling of softening damage and fracture, in which the material characteristic length of the subdivided matrix,
defining the fracture behavior, must be known. The main problem is that there is no way to determine this length

Fig. 2. RUCs with bias tow angles of 30� , 45� and 60� and their dimensions.

Fig. 3. Plan view of the layout of truss elements in half the RUC.

Fig. 4. Decomposition of RUC into bias and axial tows and assembled RUC with connectors. The bias tow angle corresponds to 30�.
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computationally. It would have to be arbitrarily assumed, which could fit some test data but not others (in detail, see [13]),
and would negate the purpose of multiscale analysis. Even if this length were guessed correctly, one would have to imple-
ment for the matrix between the adjacent tows some suitable type of nonlocal model serving as a localization limiter [13].
This would lead to complex programming.

Without introducing a nonlocal or crack band model with a material characteristic length, the computer simulations
would exhibit spurious mesh sensitivity to the element size in the matrix, i.e., different results would be obtained for differ-
ent element sizes [13]. For an infinite mesh refinement in the pure matrix, such analysis would converge to a solution in
which the fracture energy dissipation in the pure matrix is zero; see Ref. 12, chapters 7 and 8 for details.

Another problem is that if the pure matrix is subdivided into many elements, the propagation of multiple localized three-
dimensional fracture surfaces through the pure matrix needs to be simulated. This brings about a host of further complex-
ities if the modeling should be kept objective. If they are not overcome, the objectivity is again lost.

The use of truss (or connector) elements, which characterize damage and fracture energy dissipation on the mesoscale
globally, is not only simpler but avoids all these problems.

2.4. Macroscale

The dimensions of the beams, tested at the University of Michigan [1], are given in Table 3 where L0 is the distance be-
tween the supports. The geometry and typical loading configuration are seen in Fig. 5. The span-depth ratio of the beams is
2.583 and the ratio of notch depth to beam depth is a = 1/6. A coarse mesh is used to capture the global behavior of the
beams. The actual specimens used in the experiments consist of 8 plies having the total thickness of 7.62 mm. The simula-
tions consider only one ply since, under in-plane loading, all the plies must behave identically. However, for a general load-
ing, simulating only one ply would, of course, be insufficient.

A collection of RUCs is embedded above the notch and is constrained to the surrounding continuum elements. To reduce
the computational demand, only the smallest number of RUCs needed to capture the observed failure mode is used. The con-
tinuum finite elements lying above the zone of embedded RUCs are also endowed with fracturing parameters; see Fig. 5.
These continuum elements have no effect on the peak load but make the post-peak response drop steeply to a negligible
residual stress. The drop is followed by elastic re-hardening. Assigning to these continuum elements a finite tensile strength
in the lateral (horizontal) direction ensures that the crack could propagate further, after the zone of RUCs has been fractured.
The strength of these elements is prescribed to be 20% greater than the flexural strength (or modulus of rupture), as deter-
mined empirically. The elevated strength limit ensures that the RUCs undergo damage before the beam elements would.
Sensitivity analysis showed that by increasing the strength between 10% and 40% had a negligible effect on the peak load
and a miniscule effect on the residual stress.

To determine the smallest, yet still sufficient, number of embedded RUCs required to obtain a realistic peak load and ini-
tial post-peak response, another series of tests is simulated. A notched beam, which is geometrically similar to those shown
in Table 3, is generated with a length of 322 mm and height 125 mm. One, three and five RUCs with a 30� bias angle are then
embedded above the notch and the responses are compared with the assigned real properties described later as part of the
validation.

Fig. 6 confirms that the beam with three embedded RUCs gives almost the same response as the beam with five embed-
ded RUCs. This indicates that in this particular case only three RUCs may be sufficient to obtain the correct peak load.

Table 2
Tow sizes for RUC geometry.

Property Values

Bias tow angle (�) 30� 45� 60�
Axial tow width (mm) 2.940 3.704 4.564
Axial tow height (mm) 0.532 0.381 0.399
Bias tow width (mm) 2.630 2.995 3.022
Bias tow height (mm) 0.284 0.230 0.310
Axial tow spacing (mm) 5.00 6.64 9.10

Table 3
Beam sizes used in experiments and simulations.

Length L0 (mm) Depth D (mm) Notch depth a (mm)

Size 1 196.85 76.20 12.70
Size 2 393.70 152.40 25.40
Size 3 787.40 304.80 50.80
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3. Finite element modeling

The FE analysis is based on a total stress–strain formulation, characterized by a secant stiffness matrix, KS
i . The solution

leads to the matrix equation

KS
i ri ¼ f i; ð8Þ

where ri is a vector containing the total displacements at a load increment i, fi represents a vector of total nodal forces and KS
i

contains the material properties and the geometrical information of the finite elements. Compared to an incremental formu-
lation, the total formulation has the advantage of guaranteed convergence and a positive definiteness of the stiffness matrix,
obviating any need for regularization schemes [25]. The assembly and solution of Eq. (8) is carried out in an open-source
object-oriented finite element code called OOFEM (obtainable from www.oofem.org) [26].

The use of OOFEM was made necessary by the lack of availability of total stress–strain formulation in ABAQUS. This com-
mercial code uses an incremental formulation for nonlinear problems, which creates a convenient framework for a harden-
ing plastic material, for which there are no localization problems. On the other hand, incremental formulation generally runs
into convergence problems for softening damage, for which the incremental stiffness matrix loses its positive definiteness
and the Jacobian approaches zero. To overcome these problems, artificial numerical damping has been used [25]. However,
this usually gives correct results within only one order of magnitude of strain rates, and adds various unnecessary compli-
cations which are automatically avoided by the total formulation. Commercial codes, such as ABAQUS, provide a general tool
which might not be the best suited for a particular problem such as the present one.

Fig. 5 shows the typical geometry of a notched beam used in the analysis. To simplify the discretization of the system, two
independent input files of RUC and beam are merged together using a python script. Master-slave nodes are then used to
interconnect edges of adjacent RUCs boundaries. Hanging nodes are located on the continuum elements so that the edge
of the RUCs can be attached. The mesh away from the expected cracking zone can be kept coarse and rather regular, while
the mesh near the zone of potential cracking, consisting of the RUCs, is much more refined. All distal nodes of the beam are
constrained against out-of-plane displacements.

Fig. 5. Beam geometry with a notch and three embedded RUCs.
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Fig. 6. Beam response with one, three and five embedded RUCs.
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3.1. Material law for damage with fixed crack orientation

The elastic behavior of the fiber tows is assumed to be transversely isotropic, and thus characterized by five independent
elastic constants, E11, E22, m12, m23 and G12, see Table 1. Large macroscale elements outside of the cracking zone are also as-
sumed to be transversely isotropic.

A simple and convenient modeling framework for introducing material degradation due to cracking damage is the con-
tinuum damage mechanics, proposed in 1958 by Kachanov [27]. However, to prevent spurious mesh sensitivity and capture
the correct size effect [12,28], this classical theory must be suitably regularized by a characteristic length as a localization
limiter, imposed by the element size within the RUC, which is proportional to the size of the RUC.

Since localized fracture breaks transverse isotropy, the continuum damage mechanics necessitates six independent inter-
nal damage variables dp, with p 2 {11, 22, 33, 23, 31, 12}, each of which ranges from 0 to 1. A fixed crack orientation is as-
sumed, aligned with a local material coordinate system. Matrix notation of the compliance tensor H thus takes the form:

H ¼

1
ð1�d11ÞE11

� m21
E22

� m31
E33

0 0 0

� m12
E11

1
ð1�d22ÞE22

� m32
E33

0 0 0

� m13
E11

� m23
E22

1
ð1�d33ÞE33

0 0 0

0 0 0 1
ð1�d23ÞG23

0 0

0 0 0 0 1
ð1�d31ÞG31

0

0 0 0 0 0 1
ð1�d12ÞG12

2
666666666664

3
777777777775
: ð9Þ

The elastic constants of the matrix follow the well-known restrictions of isotropy, e.g. G23 = E22/2(1 + m23). The matrix of the
material stiffness tensor, required for assembling the structural stiffness, is easily obtained by the inversion of H. The con-
stitutive law in the total stress–strain formulation has the form:

e ¼ Hðd11;d22; . . . ;d12Þ : r: ð10Þ

The damage criterion is based on the concept of strength (or ultimate stress), although more advanced criteria using a com-
bination of stresses and strains exist [25,29].

Fig. 7 shows the stress–strain law used in all simulations. Linear softening is assumed because it gives an explicit formu-
lation which requires no iterations, unlike exponential or bilinear softening [30]. Damage occurs when any of the six stress
components exceeds the prescribed strength fp,0, i.e.

jrpjP jfp;0j: ð11Þ

The fp,0 values for compression and tension can be different.
At the point of damage initiation, the characteristic element length lp and ep,E, see Fig. 7, are known. lp, which is the width

of the softening zone within an element, is generally different for each failure mode or for elements of different sizes. To
overcome the mesh dependence on Gf,p and to ensure objectivity, the crack band model is used [31]. Given the fracture en-
ergy Gf,p, the maximum strain ep,0, reached when the stress is reduced to 0, is evaluated as follows:

ep;0 ¼ ep;E þ
2Gf ;p

fp;0lp
: ð12Þ

The properties of the pure matrix, including its fracture energy, are known from reference manuals but, except for one lim-
ited study [36], no usable data exist for the fiber tows (for which significantly different fracture energies were reported
depending on the number of fibers in a tow). Thus, the fracture energy Gf of the tows and the tensile strength ft were here

Fig. 7. Assumed linear softening law for each orthogonal direction.
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determined by optimum fitting of the size effect test results, while the constituent properties known from manuals were
used as the input. The Gf and ft values obtained for one bias tow angle should, in principle, be usable for other tow angles
but this could not be shown for the specimens provided since the fiber volume fractions for various tow angles differed.
In this optimization it is necessary avoid snap-back instability which begins when the post-peak softening slope in the con-
stitutive law Fig. 7 becomes vertical. This condition provides a useful minimum bound on the admissible Gf values, as given
by Eq. (13) (this bound depends on Young’s modulus as well as the characteristic element length, and since Young’s modulus
and the element size of the supplied specimens with different tow angles differ, the Gf values do, too).

When the finite element size in the crack band model is increased sufficiently, the post-peak stress strain relation
switches from softening to snap-back, in order to maintain the specified fracture energy value. In computations, this leads
to instability, lack of convergence and dynamic response. To ensure that no snap-back could occur in the effective stress–
strain relation at some integration point, a certain minimum value of fracture energy Gf,p,min must be imposed on each finite
element (for explanation, see [12, p. 251] and also [38,11]. Since the characteristic element size lp is roughly equal to the
crack band width, one thus obtains:

Gf ;p P Gf ;p;min ¼
f 2
p;0lp

2Ep
: ð13Þ

where Ep = elastic modulus in the direction p.
The point of damage initiation could be identified exactly only in the ideal case of infinitely small load increments, which

is unattainable. Hence, one needs to interpolate between the first equilibrated post-peak increment and the previously con-
verged increment, so as to achieve a good approximation even when the loading steps are not very small.

The evolution of the damage parameters is based on the evolution of the corresponding strain, ep, and the maximum
strain achieved thus far, j�p ;

if
ep > j�p ^ ep < jþp damage does not grow;
ep 6 j�p _ ep P jþp damage may grow:

(
ð14Þ

When the damage can grow, the desired stress rp is evaluated from the actual strain ep and the known softening parameters

r0p ¼ fp;0
ep;0 � ep

ep;0 � ep;E
: ð15Þ

The damage variables dp ensue from Eq. (9); for example

d11 ¼ 1� r11

E11 e11 þ m21
E22

r22 þ m31
E33

r33

� � ; ð16Þ

d12 ¼ 1� r12

G12e12
: ð17Þ

To meet the thermodynamic restrictions, no decrease of the damage parameter in permitted.
The constitutive law from Eq. (10) was verified by uniform stretching of one brick element in the y direction. Fig. 8 shows

that the damage law works as expected in the tensile and compressive regions.

Fig. 8. Stress–strain response of a linear brick element stretched in the y direction.
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4. Computations, results and discussion

4.1. Calibration of elastic response of RUC

The elastic properties of the tows and epoxy matrix used in the analysis are summarized in Table 1. The connections be-
tween the axial and bias tows (represented by truss elements, or bars) are characterized by their lengths, which are given by
the tow geometry, and by their cross-section area Ac and Young’s modulus Ec, both of which are assumed to be the same for
all the truss elements. In the present quasi-static problem (i.e., a problem in which, by contrast to wave propagation, the
inertial forces are negligible), only the product AcEc matters. The reason is that it alone determines the stiffness of the truss
elements. It follows that either Ec or Ac may be chosen and the other then follows by elastic calibration. Here we chose
Ac = 1 mm2, which makes the volume of all the connectors roughly equal to the volume of the pure matrix between the tows
(although this equality is here unnecessary, as it would matter only for inertial forces in wave propagation). Therefore, the
only connector characteristic that is identified by matching the overall elastic response of the RUC is Young’s modulus Ec.

The elastic calibration depends on two effects: the boundary conditions, and the finite element (FE) size. Periodic bound-
ary conditions are used since they generally are best for providing the overall elastic properties of the RUC, independent of
specimens size or discretization [32]. Fig. 9 testifies to a fast convergence of E11 to the experimental value when the mesh is
being refined (this is the so-called h-version of FE). The convergence validates the way the RUC has been constructed and
assigned the elastic properties of the individual components. The mesh was then made coarser to not only improve compu-
tational efficiency, but also to better capture the fracturing within the fiber tows and the pure matrix pockets which are
spaced laterally between the axial fiber tows. A finer mesh does improve accuracy for non-softening behavior, however, it
inevitably leads to computational problems when simulating softening damage and fracture; see Section 2.3.

Mixed boundary conditions are more realistic when the RUC alone is compared with the performance of an embedded
collection of RUCs. The boundary conditions imposed are based on the following considerations:
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Fig. 9. Convergence of apparent modulus E11 with varying element size. Periodic or mixed boundary conditions are imposed. RUC with 30� bias tow angle.

Fig. 10. Deformation of RUC under three deformation modes, bias tow angle 30�. Mixed boundary conditions apply.
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1. In the analysis of three-point-bend specimens, the RUCs are embedded in the beam and their boundaries are kinemati-
cally attached to the neighboring macroscale finite elements. In this particular case, the kinematic boundary conditions
are applied.

2. Equal nodal displacements are enforced at the border between two RUCs to ensure continuity of the axial and bias tows.

For these reasons, the elastic calibration over one RUC consists of kinematic uniform boundary conditions for the in-plane
directions and of periodic boundary conditions for the out-of-plane direction; see Fig. 10. In planar problems, such as the
quasi-static three point bending tests simulated in this study, it is acceptable to consider any out of plane deformation as
periodic, since only one layer of an 8-ply composite is being simulated. The calibration resulted in truss (or bar) element
moduli of 35.0 GPa, which is the optimal value assigned to all the trusses in all RUCs. This value is found to be virtually inde-
pendent of the number of RUCs used in the calibration.

Table 4
Apparent homogenized elastic properties from one RUC with imposed mixed boundary conditions. Experimental values
are in parentheses.

Bias tow angle 30� 45� 60�

E11 (GPa) 80.24 (53.10 ± 0.78) 36.97 (27.88 ± 1.15) 35.47 (23.17 ± 0.85)
E22 (GPa) 11.66 (7.29 ± 0.75) 13.88 (13.74 ± 1.17) 35.36 (22.09 ± 0.09)
G12 (GPa) 10.67 7.95 8.02
m12 (–) 0.93 (0.93 ± 0.03) 0.61 (0.59 ± 0.06) 0.27 (0.30 ± 0.01)
m21 (–) 0.12 (0.12 ± 0.02) 0.23 (0.32 ± 0.01) 0.30 (0.34 ± 0.02)

Table 5
Elastic response of RUC with a bias tow angle of 30� with varying truss element Young’s modulus.

Truss elements Young’s modulus (GPa) E11 (GPa) E22 (GPa) m12 m21

15 80.17 11.60 0.93 0.124
35 80.24 11.66 0.93 0.124
55 80.26 11.61 0.92 0.124

Table 6
Elastic response of RUC with a bias tow angle of 60� with varying truss element Young’s modulus.

Truss elements Young’s modulus (GPa) E11 (GPa) E22 (GPa) m12 m21

15 31.36 35.23 0.28 0.296
35 31.47 35.36 0.27 0.297
55 31.47 35.40 0.28 0.299

Table 7
Strength and fracture energies assigned to the RUC components. The indexes mean t-tension, c-compression, s-shear.

Bias tow angle 30� 45� 60�

Axial and bias tows f11,tc ±4950a MPa ±3700a MPa ±2550a MPa
Gf,11,tc 63.5e N/mm 41.5e N/mm 19.7e N/mm
f22,33,t 80b MPa
f22,33,c �241b MPa
fs 34.9b MPa
Gf,22,33,t 0.185cb N/mm
Gf,22,33,c 1.05e N/mm
Gf,s 0.485db N/mm

Epoxy resin ft = 80 MPa [34], fc = �241 MPa [34]
fs = 34.9 MPa [33]

Gf,t = 0.620ce N/mm, Gf,c = 5.6de N/mm
Gf,s = 0.485 N/mm [35]

a Reported tensile strength of carbon tows 3.8 and 4.5 GPa [7].
b Taken from the property of pure epoxy resin, indicated at the bottom of the Table.
c Reported 0.185 N/mm [35].
d Reported 0.485 N/mm [35].
e Assigned the minimum fracture energy which does not cause the snap-back, see Eq. (13).
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Table 4 compares the RUC elastic performance to the experiments of Waas et al. [22]. Poisson’s ratios are matched rea-
sonably well for all the bias tow angles. All the apparent elastic moduli are up to 60% greater, because of mixed boundary
conditions and a coarse RUC discretization.

An analysis was performed to evaluate the sensitivity of the elastic response of the RUC to different Young’s moduli of
truss elements. Table 5 summarizes the results for a bias tow angle of 30�, and Table 6 for a bias tow angle of 60�.

4.2. Strength and fracture energy of RUC components

Table 7 gives a summary of the strength and fracture energy values prescribed to all RUC components. The shear strength
of the epoxy resin is assumed to be 34.9 MPa [33], although values as high as 60 MPa have been reported [34]. However, this
discrepancy is no problem since the strength and fracture properties of the epoxy have a negligible effect on the peak loads of
the beams. The fracture energies of the fiber tows, except for those for the fiber direction, are inherited from the epoxy resin.
If necessary, they are raised to the minimum fracture energy value that suffices to avoid the snap-back; see Eq. (13).

The strength of the axial and bias tows had to be calibrated from experimental data. The simulations show that a dom-
inant failure mechanism of the beams consists of a tensile failure of the bias tows, which is controlled by their tensile
strength and fracture energy. The strength of the axial fiber tows can be chosen to be equal to the strength of the bias tows
since they have a comparable volume fraction for each bias tow angle. Besides, the contribution of the axial tows to this type
of failure is found to be negligible, which is not surprising since the stresses in the axial tows are several times lower than
those in the bias tows.

The prescribed tensile strength of the bias tows ranges between 2.55 and 4.95 GPa, which appears to be quite reasonable.
The tensile strength of a single carbon fiber was reported to be 4.96 GPa [9] and 5.8 GPa for a four-filament tow [36]. In the
present case, the combined fiber volume fraction is between 0.54 and 0.77 [22]; see Table 1. The transversal strengths f22,tc

and f33,tc of the fiber tows are expected to be governed by the strength of the epoxy matrix.
The damage initiation criterion from Eq. (11) is expressed in terms of stresses. To achieve nearly equilibrated stresses,

equilibrium iterations are needed prior to applying this criterion. Fig. 11 shows that five iterations suffice, as determined
by sensitivity analysis. These iterations, used in all computations, generally take less than 10% of the overall CPU time.

4.3. Simulations of fracture of notched beams

Fig. 12 compares the simulated load–deflection curves and experimental peak loads. Generally, a nearly linear response is
observed before the peak load, after which quasi-brittle failure immediately follows. The residual strength in the simulated
curves is caused by transverse and shear load-bearing capacity of the bias tows.

Fig. 13 displays the best of the three experimental results for each bias tow angle, and compares them to the simulated
results (dashed line). The smallest test specimens are seen to exhibit the most ductile response, which is typical of quasibrit-
tle size effect.

Fig. 14 shows the macroscale layout and deformations for the smallest beam with the bias tow angle of 30�. The subplots
on the left and right show the beam at, and just after, the peak load. The deformation is magnified three-times.

The damage mechanism can be discerned in more detail in Fig. 15. It consists of the bridging of cracks by the fiber tows,
and is similar for all tow angles and beam sizes. According to the present simulations, the cracking of matrix and fibers pro-
ceeds in the following sequence:
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Fig. 11. The role of iterations on the introduction of damage.
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1. A crack initiates in the matrix shortly after the application of load. The beam stiffness drops by up to 15%, which is man-
ifested through a change of slope, as can be noticed in Fig. 12. The early damage of the epoxy matrix is consistent with a
previous report [24].

2. At 50% of the peak load, shear damage occurs in the bias tows near the connection points of the truss elements. A minor
shear damage may also occur in the axial tows, however only a negligible reduction in beam stiffness is noticed.

3. Shortly before the peak load, a few bias tows may fail in tension. This is what produces the discontinuous ‘jumps’ in
Fig. 12.

4. At the peak load, typically two RUCs show a significant damage indicating formation of the fracture process zone.
5. The state at the first post-peak point shows intense tensile fracturing in several bias tows, but some stress is still trans-

mitted through the undamaged bias tows.
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Fig. 12. Load–deflection plots for 30� , 45� and 60�. The solid circles represent peak loads from experiments.
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A similar damage mechanism was described in [24,37]. A failed test specimen is shown in Fig. 16. It clearly demonstrates
tensile failure of the bias tows obtained numerically.

Table 8 gives an overview of the details of computations on a single 32-bit CPU (3.2 GHz). The relative tolerance of 0.001 is
prescribed for both the mid-span displacement and force equilibrium. Fifty load increments are executed in all the simula-
tions, which are controlled by specified increments of the mid-span deflection. The factorization of the sparse stiffness ma-
trix takes the majority of computational time. Typically 10–30 iterations are used during one load increment.

This may rise to 70 during significant damage, especially for the smallest beam sizes. The complete solution for all the
sizes takes 14–16 h.
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Fig. 14. The smallest beam ‘‘size 1’’, bias tow angle 30�. Left: the beam at the peak load, right: one step after the peak load. Colors (or shades) represent
damage, the deformation is scaled 3�. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 15. Deformed shape of three embedded RUCs in the size-1 beam, bias tow angle 30� . Colors represent damage magnitude, the deformation scaled 3�.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 16. A typical crack pattern observed in the experiments.
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4.4. Size effect

Softening damage or fracture automatically gives rise to a non-statistical size effect [12,38–42]. This is the most impor-
tant consequence of quasibrittle fracture, and is essential for correct and unambiguous identification of the material fracture
properties.

In a very small specimen or structure, the fracturing zone (or fracture process zone, FPZ) extends, at maximum load, over
nearly the entire cross section of the specimen. In very large specimens, the FPZ is almost negligible compared to the struc-
ture size. This is because the FPZ size, which is related to the material characteristic length (which in turn is roughly equal to
the unit cell size), remains nearly constant as the structure size is increased. Thus the finite FPZ size causes quasibrittle
behavior, i.e., a damage behavior that is transitional between nearly plastic (or ductile, quasi-plastic) behavior, typical of
small structures, and brittle behavior, typical of large structures.

Ductile structures always loose their load carrying capacity at the same maximum stress, or at the same nominal stress
value. In other words, there is no size effect. But in quasibrittle structures, the value of nominal stress rNu at failure decreases
with the structure size, D. For similar cracks in geometrically similar perfectly brittle structures, rNu / D�1/2 according to the
linear elastic fracture mechanics (LEFM), which gives a straight line of slope�1/2 in the size effect plot of logrNu versus logD.

In quasibrittle structures, the size effect plot is a transition from a horizontal line for small sizes to the inclined asymptote
of slope �1/2 for large sizes. This is important for the identification of cohesive fracture properties of the material.

All the structures with sizes not too small and not too large with respect to the characteristic size have a strength that
scales approximately according to the size effect law

rNu ¼
Bf 0tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ D=D0

p ; ð18Þ

where Bf 0t and the transitional structure size D0 are unknown parameters. This law has been derived by asymptotic matching
of the strength scaling for the perfectly ductile case at small sizes and the perfectly brittle case at large sizes.

The parameters of this law can be identified from tests of maximum load of geometrically similar specimens of different
sizes, provided that a sufficiently broad size range is used. The same law is also observed in simulation results with the cohe-
sive crack model, the crack band model and the nonlocal damage model [12]. Thus, the material parameters of the RUC can
be identified by fitting the size effect simulations to the test data.

The simulated peak loads have been fitted by Eq. (18) using the Levenberg–Marquardt algorithm. Fig. 17 shows the size
effect law for specimens with all the three bias tow angles. Angle 60� shows the most brittle behavior. In all the three graphs,
the horizontal dashed line represents the strength for a very small size, which typically follows from plasticity analysis, and
the negatively sloped line is the strength limit based on linear elastic fracture mechanics.

4.5. Determination of fracture energy and effective process zone length

The dimensionless energy release rate g(a) is equal to k2(a), where kðaÞ ¼ b
ffiffiffiffi
D
p

KI=P = dimensionless stress intensity fac-
tor; a = a/D, a = crack length (including the notch), D = specimen dimension (or depth), KI = mode I stress intensity factor,
P = load and b = specimen width. Graphs or tables of KI as a function of a exist for many specimen geometries, but only
for isotropic materials [43]. The 2DTBC is orthotropic, and so it is necessary to determine k(a) numerically (e.g. [44]).

The fracture parameters can be determined from size effect tests, as shown in [11,12,41,45,46]. The nominal strength rN

is defined as

rN ¼ cN
P

bD
; ð19Þ

where P is the maximum load, cN is a constant chosen for convenience, and b and D are the specimen thickness and depth,
respectively. Eq. (18) for the size effect law may be rewritten in terms of the LEFM functions [12,45,46]:

rN ¼ cN
EGf

g0ða0Þcf þ Dgða0Þ

� �1=2

: ð20Þ

Here Gf is the fracture energy of the material, cf is the effective length of the FPZ (equal to about one half of the actual FPZ
length for an infinitely large specimen), a0 = a0/D, where a0 is the length of the notch.

Table 8
Computational details.

Size Size 1 Size 2 Size 3

Elements 591 887 1920
DoFs 7041 8007 11245
RAM (MB) 105 122 196
Factorization (s) 51 88 185
Elapsed real solution time (h) 14.23 14.45 16.38
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A planar three-point-bend specimen, whose dimensions are normalized with respect to the specimen depth, is generated
for each bias tow angle considered. A unit load is chosen for all the simulations.

To determine function g(a), the J-integral values, which are equal to the energy release rates GðaÞ, have been calculated
numerically for several a values by ABAQUS. Then

gðaÞ ¼ EGðaÞ
r2

nD
; ð21Þ

where rn = P/bD = nominal stress, analogous to Eq. (19) except that here P is the applied load, and generally not the peak
load.

Since the global elastic response of the specimens has been determined from experiments, all the in-plane elastic con-
stants were first normalized by E11, and then used in the elastic material law of ABAQUS. The relative crack length is then
varied from a = 0.14 to a = 0.5 and a fourth-order polynomial is fitted to the data. rN can then be calculated from Eq.
(19). Since all the elastic constants in the material law are normalized with respect to E11, and all the dimensions are nor-
malized with respect to D, Eq. (21) reduces to G ¼ gðaÞ.
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Fig. 17. Fitting of size effect law for beams manufactured from 2DTBC, 30� , 45� and 60� bias tow angles.
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In view of Eqs. (18) and (20), the fracture energy Gf and the effective length of the fracture process zone cf may now be
calculated as

Gf ¼
ðBfuÞ2

c2
NE

D0gða0Þ; ð22Þ

cf ¼
gða0Þ
g0ða0Þ

D0; ð23Þ

where Bfu and D0 are obtained by fitting the measured rN-values with the Levenberg–Marquardt optimization algorithm, and
cN = 1.5 length/depth. The resulting fracture energy, Gf, and the effective length of the process zone, cf, are displayed in
Table 9.

5. Conclusions

1. The multiscale finite element simulation of notched 2DTBC beams, in which the region of expected fracturing is replaced
by a system of repetitive unit cells (RUCs), has proven to be capable of capturing the elastic response as well as the peak
loads obtained experimentally by fracture tests of notched specimens of different sizes. The damage process identified by
the analysis has also been shown to be realistic.

2. Both the simulation results and the tests clearly show a strong size effect, which is missed by computations that do not
use fracture mechanics or nonlocal damage mechanics, and thus are not objective due to the non-inclusion of a material
characteristic length scale.

3. The analysis of the size effect tests requires the energy release rate function to be determined for the macroscopic ortho-
tropic elastic properties of the composite. This can be easily accomplished using finite element software, such as ABAQUS.
The fracture energy Gf and the effective process zone size cf readily follow.

4. The present approach can capture the effects of different volume fractions of resin and tows, different inclinations of brai-
der tows and different properties of the fibers and resin.

5. For structures with crack locations unknown a priori, the present analysis would be (without an adaptivity extension)
computationally very intensive. Nevertheless, the present RUC approach is valuable for calibrating a more computation-
ally efficient approach, such as the microplane model [21], when the full range of experiments is not available.
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