Built-In Namespace _global_
Field Attributes | Field Name and Description |
---|---|
constant
|
|
constant
|
|
constant
|
|
constant
|
|
constant
|
|
constant
|
|
constant
|
|
constant
|
|
constant
|
|
constant
|
|
constant
|
|
constant ( = 1e-8)
|
|
constant ( = 0 )
|
|
constant ( = 1 )
|
|
constant ( = 2 )
|
Method Attributes | Method Name and Description |
---|---|
eigSolve(K, M, nEigModes, method, maxiter)
Eigenvalues and eigenvectors solver.
|
|
eye(nRows)
Alias for dentity(), see identity
|
|
identity(nRows)
Returned identity matrix of given size, see Matrix#Identity
|
|
linSolve(a, rhs, saveOrig, method, precompDecomps)
Linear system equation solver.
|
|
mat(arry)
Returns new Matrix object from given array
|
|
ones(nRows, nCols)
Returns new Vector or Matrix full of given size full of ones
|
|
range(a, b, c)
Returns sequence (array) with start, stop, step.
|
|
vec(arry)
Returns new Vector object from given array
|
|
zeros(nRows, nCols)
Returns new Vector or Matrix full of given size full of zeros
|
Field Detail
JSM_CHOLESKY
constant
Defined in: jsmatrix.src.js.
Defined in: jsmatrix.src.js.
JSM_FULLPIVOT
constant
Defined in: jsmatrix.src.js.
Defined in: jsmatrix.src.js.
JSM_GAUSS
constant
Defined in: jsmatrix.src.js.
Defined in: jsmatrix.src.js.
JSM_GAUSSJORDAN
constant
Defined in: jsmatrix.src.js.
Defined in: jsmatrix.src.js.
JSM_INV_IT
constant
Defined in: jsmatrix.src.js.
Defined in: jsmatrix.src.js.
JSM_LDU
constant
Defined in: jsmatrix.src.js.
Defined in: jsmatrix.src.js.
JSM_LU
constant
Defined in: jsmatrix.src.js.
Defined in: jsmatrix.src.js.
JSM_NOPIVOT
constant
Defined in: jsmatrix.src.js.
Defined in: jsmatrix.src.js.
JSM_PARTPIVOT
constant
Defined in: jsmatrix.src.js.
Defined in: jsmatrix.src.js.
JSM_QR
constant
Defined in: jsmatrix.src.js.
Defined in: jsmatrix.src.js.
JSM_SUBSPACE
constant
Defined in: jsmatrix.src.js.
Defined in: jsmatrix.src.js.
JSM_TOL
constant ( = 1e-8)
Defined in: jsmatrix.src.js.
Defined in: jsmatrix.src.js.
X
constant ( = 0 )
Defined in: jsmatrix.src.js.
Defined in: jsmatrix.src.js.
Y
constant ( = 1 )
Defined in: jsmatrix.src.js.
Defined in: jsmatrix.src.js.
Z
constant ( = 2 )
Defined in: jsmatrix.src.js.
Defined in: jsmatrix.src.js.
Method Detail
{[[floats]|[Vectors]]}
eigSolve(K, M, nEigModes, method, maxiter)
Eigenvalues and eigenvectors solver. Returns first nEigModes eigenvales and eigenvectors of problem K*vi=oi^2*M*vi (oi is i-th eigenvale and vi is i-th eigenvector). Typycal example of usage is eigenvale dynamics.
Defined in: jsmatrix.src.js.
Defined in: jsmatrix.src.js.
K = mat([[9,3,0,0],[3,8,2,0],[0,2,7,2],[0,0,2,8]]); M = Matrix.Diagonal([3,2,4,3]); e = eigSolve(K,M,4); o = e[0]; v = e[1]; o1 = o[0]; // o1 = 1.2504038497315775 o2 = o[1]; // o2 = 2.279120228657416 o3 = o[2]; // o3 = 2.948867853467429 o4 = o[3]; // o4 = 4.938274734810245 v1 = v[0]; // v1 = Vector([ 0.1288306767139194, -0.22540165581364102, 0.4265175098731745, -0.20077135620035116 ]) v2 = v[1]; // v2 = Vector([ 0.4514687335612619, -0.32545467450354726, -0.11713473474653795, 0.2014979513549984 ]) v3 = v[2]; // v3 = Vector([ 0.14681878659487543, -0.007507144503266177, -0.21233717286242818, -0.5016212772448967 ]) v4 = v[3]; // v4 = Vector([ 0.3022519091588433, 0.585847242190032, 0.09630780190740544, 0.028264211960396433 ]) c1 = K.x(v1).sub(M.x(v1).x(o1)); // c1 = Vector([ 6.045241529584189e-10, -2.9052349415081835e-10, -2.091367079515294e-10, 2.697864154299623e-10 ]) c2 = K.x(v2).sub(M.x(v2).x(o2)); // c2 = Vector([ 8.74326433475403e-9, -4.933693453779142e-10, -1.5765841965276195e-8, -2.9551703084607084e-8 ]) c3 = K.x(v3).sub(M.x(v3).x(o3)); // c3 = Vector([ 4.5619911848149286e-8, 1.2227673172604536e-8, -9.32639299122684e-10, 1.3564216416739328e-8 ]) c4 = K.x(v4).sub(M.x(v4).x(o4)); // c4 = Vector([ 9.357854047209457e-9, -3.189910557921394e-10, -1.804510585401431e-8, -3.197205944438508e-8 ])
- Parameters:
- {Matrix} K
- first matrix (stiffness matrix for dynamics)
- {Matrix} M
- second matrix (mass matrix for dynamics)
- {int} nEigModes Optional, Default: 1
- number of first eigenvalues and eigenvectors to be returned
- {int} method Optional, Default: JSM_INV_IT
- method of the solution. JSM_INV_IT stands for Stodola's inverse iterations methods with Gramm-Schmidt orthogonalization
- {int} maxiter Optional, Default: 1000
- maximum number of iterations
- Returns:
- {[[floats]|[Vectors]]} [[o1,o2,...,oN],[v1,v2,...,vN]], oi is i-th eigenvale (squared eigenfrequency for dynamics), vi is i-th eigenvector. N = nEigModes
eye(nRows)
- Parameters:
- nRows
{Matrix}
identity(nRows)
Returned identity matrix of given size, see Matrix#Identity
Defined in: jsmatrix.src.js.
Defined in: jsmatrix.src.js.
m = identity(3); // m = Matrix([[1,0,0],[0,1,0],[0,0,1]])
- Parameters:
- {int} nRows
- number of rows and columns of returned matrix
- Returns:
- {Matrix} nRows x nRows identity matrix
{Vector|[Vectors]|Matrix}
linSolve(a, rhs, saveOrig, method, precompDecomps)
Linear system equation solver. Returns vector x as a solution of a*ret=rhs, see Matrix#solveForRhs for input desription
Defined in: jsmatrix.src.js.
Defined in: jsmatrix.src.js.
- Parameters:
- {Matrix} a
- {Vector|[Vectors]|Matrix} rhs
- {bool} saveOrig Optional, Default: true
- {int} method Optional, Default: JSM_GAUSS
- {[Matrices]} precompDecomps Optional
- Returns:
- {Vector|[Vectors]|Matrix} solution x of a*x=rhs
{Matrix}
mat(arry)
Returns new Matrix object from given array
Defined in: jsmatrix.src.js.
Defined in: jsmatrix.src.js.
m = mat([[1,2,3],[4,5,6],[7,8,9]]) // m = Matrix([[1,2,3],[4,5,6],[7,8,9]])
- Parameters:
- {[floats](2D)} arry Optional, Default: []
- array containing matrix elements
- Returns:
- {Matrix} new Matrix object
Returns new Vector or Matrix full of given size full of ones
Defined in: jsmatrix.src.js.
Defined in: jsmatrix.src.js.
m = zeros(2,3); // m = Matrix([[1,1,1],[1,1,1]]) v = zeros(4) // v = Vector([1,1,1,1])
- Parameters:
- {int} nRows
- number of rows of returned object
- {int} nCols Optional
- if specified, new Matrix of size (nRows,nCols) is returned, new vector of size nRows otherwise
{[floats]}
range(a, b, c)
Returns sequence (array) with start, stop, step. Inspired by Python syntax
Defined in: jsmatrix.src.js.
Defined in: jsmatrix.src.js.
r = range(8); // r = [0,1,2,3,4,5,6,7] r = range(2,8); // r = [2,3,4,5,7] r = range(2,8,2); // r = [2,4,6]
- Parameters:
- {float|int} a
- start/stop (according to b, see example)
- {float|int} b Optional
- stop
- {float|int} c Optional, Default: 1
- step
- Returns:
- {[floats]} array containing given sequence
{Vector}
vec(arry)
Returns new Vector object from given array
Defined in: jsmatrix.src.js.
Defined in: jsmatrix.src.js.
v = vec([1,2,3,4]) // v = Vector([1,2,3,4])
- Parameters:
- {[floats]} arry Optional, Default: []
- array containing vector elements
- Returns:
- {Vector} new Vector object
Returns new Vector or Matrix full of given size full of zeros
Defined in: jsmatrix.src.js.
Defined in: jsmatrix.src.js.
m = zeros(2,3); // m = Matrix([[0,0,0],[0,0,0]]) v = zeros(4) // v = Vector([0,0,0,0])
- Parameters:
- {int} nRows
- number of rows of returned object
- {int} nCols Optional
- if specified, new Matrix of size (nRows,nCols) is returned, new vector of size nRows otherwise