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Matěj Lepš, Ph.D.

I also declare that all used literature is listed in References.

Date: . . . . . . . . . . . . . . . . . . . . . . . . . Signature: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



iii

Acknowledgement

I would like to express my sincere gratitude to doc. Ing. Matěj Lepš, Ph.D. because of his professional
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Abstrakt

Tato práce se zabývá v́ıcekriteriálńı optimalizaćı léčebného plánu protonové terapie.

Nejprve je představen zjednodušený model š́ı̌reńı zářeńı prostorem, tj. je zavedena Bortfeldova

analytická aproximace popisu š́ı̌reńı proton̊u v homogenńım médiu, je zaveden vliv změny prostřed́ı

a nehomogenit. Vliv změny směru zářeńı – mnohonásobný rozptyl – je zaveden Highlandovou aprox-

imaćı.

V následuj́ıćı části práce je ve stručnosti představeno v́ıcekriteriálńı lineárńı programováńı a několik

možných př́ıstup̊u vedoućıch k jeho řešeńı, zejména Benson̊uv algoritmus, resp. jeho paralelńı a ne-

paralelńı verze.

Samotná optimalizace je nejprve definována jako lineárńı program, ve kterém se minimalizuje

množstv́ı vyzářených proton̊u. Z d̊uvodu řešitelnosti je problém upraven na lineárńı program s volnými

ćıli. Finálńı modifikaćı je v́ıcekriteriálńı řešeńı lineárńıho programu s volnými ćıli, které umožńı výběr

nejvhodněǰśıho řešeńı rozhodovatelem.

V závěru práce je vyhodnocena časová náročnost implementace popsané v této práci a jsou shrnuty

jej́ı výhody.
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Abstract

This thesis deals with multi-criteria optimization of proton therapy treatment plan.

Firstly, an approximate model describing radiation spread in a space is introduced: Bortfeld’s ana-

lytical approximation of the Bragg curve in homogeneous media and the influence of inhomogeneities.

Direction change of a proton beam is implemented using generalized Highland’s approximation of the

theory of multiple scattering.

In the second chapter we shortly present some approaches leading towards the solution of multiple-

objective linear programming (MOLP), especially parallel and non-parallel versions of Benson’s algo-

rithm and a developed approach to an approximate Pareto surface based on a uniform distribution.

The optimization of the treatment plan is firstly defined as a linear program minimizing the amount

of irradiated protons. Due to the uncertainty of feasibility of the formulation a linear program with

free goals is introduced. Finally, we enhance the formulation to a multi-objective linear program with

free goals, enabling thus the decision maker to choose the most appropriate treatment plan suitable

for the particular patient.

In the conclusion time demands of the implementation are evaluated.
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Chapter 1

Introduction

Oncologic diseases are one of the most frequent1 causes of death not only in the Czech Republic2.

Depending on the diagnosis the treatment of patients can be divided into chemotherapy, surgery and

radiotherapy. Radiotherapy is based on irradiation of a malignant tumor by ionizing radiation while

minimizing consequences for the surrounding healthy tissues. The most commonly used particles

are electrons and photons, however recently hadrons, i.e. protons and light ions, have gained in

importance.

Radiotherapy

Based on the location of the source of irradiation it is possible to divide radiotherapy into external

beam radiotherapy and brachytherapy. In brachytherapy the radiation source, either liquid or solid,

gets close to irradiated tumor, hence only little damaging the surrounding healthy tissue. In external

beam radiotherapy the radiation source is, on the contrary, placed outside of the patient’s body.

Because radiation spreads towards the tumor through skin and other tissues it is meant to be less

sparing (Hynková, Doleželová, Šlampa).

To destroy the tumor, also referred to as the target TAR, a determinate minimal dose is prescribed

by a doctor. As the dose value is high the patient needs to be irradiated multiple times by a lower

dose to avoid side effects. The same way a particular maximal dose for surrounding Organs at Risk

(OARs) and eventually for all the surrounding (normal) tissues is defined to prevent their damage.

Particle streams passing through tissues cause their ionization, excitation of molecules and the

formation of free radicals, consequently damaging DNA of the individual cells. After irradiation the

cells use DNA repair mechanism. The ability of tumor cells to repair DNA is, however, lower, hence

if the dose quantity is sufficient the tumor cells are either destroyed or prevented to divide.

To create the treatment plan it is firstly needed to assess a three-dimensional model of tissues

surrounding tumor, for which magnetic resonance imaging (MRI) or computed tomography (CT) are

used. The output of MRI and CT are two-dimensional slices with 0.46875 mm or 0.9375 mm precision

1According to (sta, 2013) cancer is the 2nd most frequent cause of death in the Czech Republic; most frequently the
Czechs die because of the failure of the circulatory system.

2According to the statistics of World Cancer Research Fund (WCRF) there are annually indicated 293.8 patients
with cancer on 100000 inhabitants, which leads to 14th most frequent incidence in the world (Wcrf.org, 2015).
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in 3 mm or 5 mm distances. From the slices it is then possible to build the complete 3D model

(Schlegel et al., 2006).

The spacial grid is then deployed by individual beams; and their intensities, i.e. primary fluencies,

are optimized. The aim of the optimization procedure is to fulfill the required minimal dose in tumor

and not to exceed the maximal dose in OARs. The optimization of individual beam intensities is

usually referred to as Intensity Modulated Radiation Therapy (IMRT) or in the case of protons as

Intensity Modulated Proton Therapy (IMPT). By the usage of individual intensities optimization it

is also possible to irradiate complex geometries.

In the preparation of the treatment plan for IMPT or IMRT, so called inverse planning is used.

Firstly, a doctor specifies tumor and OARs and assigns related dose limits. All the anatomically impor-

tant structures mentioned above are drawn as a contours into CT or MRI slices. Finally an optimiza-

tion program computes primary fluencies to fulfill the prescribed assignment (Hynková, Doleželová,

Šlampa).

Comparison of proton and photon therapy

In both proton and photon therapy the particles are accelerated in a circular particle accelerator

(either cyclotron or synchrotron) to the required kinetic energy. Note that in the proton therapy the

energy range is usually between 70-230 MeV. The dose irradiated in the direction z is dependent also

on used particles. For comparison, the dose valid for protons and photons spreading through water

environment is shown in Figure 1.1.

s

s

Figure 1.1: Comparison of absorbed dose of protons and photons in water as a function of the depth z.
Proton beam takes a significant extreme point – Bragg peak. The figure has been copied from (Lang,
Riesterer, 2013).

In the case of protons the largest amount of dose is absorbed by water in a short interval called the

Bragg peak. The distance of the Bragg peak from the source of radiation is dependent on the kinetic

energy of protons, hence it is possible to achieve sufficient irradiation of tumor and concurrently to

save the healthy tissues and avoid the OARs. For photons the largest amount of dose is absorbed in

a small distance from the radiation source, usually ahead of the tumor. The amount of absorbed dose
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gradually decreases and therefore the tissues behind the tumor are also affected. Due to the lower

absorbed dose in healthy tissues the more expensive proton therapy is used mainly for tumors close

to OARs – brain, eyes, neck, prostate etc., see Figure 1.2 for a reference example.

   
 

   

Figure 1.2: Comparison of IMRT (left) and IMPT (right) treatment plan. The figure has been copied
from (Taheri-Kadkhoda et al., 2008).

Proton therapy treatment plan

Individual proton beams are computed by a very accurate but also time demanding probabilistic Monte

Carlo method. The subsequent optimization can then last even half a day. The optimal treatment

plans are thus prepared in advance, after the patient’s last visit before irradiation. Due to the daily

dose limits the patient is usually irradiated multiple times with the interval of several days.

In the resulting time spaces the tumor can change its shape, even very drastically, and the prepared

treatment plan then does not make any sense. It is therefore needed to create a new one as soon as

possible to reflect the changes.

This thesis deals with a simplified model of a beam propagation through matter and introduces

the influence of inhomogeneities. The spacial effect of the beam cased by multiple scattering is also

considered. This thesis further introduces multi-objective linear programming (MOLP) and establishes

a multi-objective model to acquire whole Pareto Surface (PS) of a given MOLP. Also a developed

algorithm for an approximation of the whole Pareto surface is presented. The theory is then applied

on the multi-objective optimization of proton therapy treatment plan.

The aim of this thesis is to assemble and solve the optimization problem in MATLAB software,

reducing the computational time as much as possible to enable the doctors to reflect changes in the

geometry of tumor and its surroundings.
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Chapter 2

Beam propagation through matter

Cancer treatment using radiotherapy is based on the principle of destroying the tumor by a certain

dose. It is therefore crucial to determine the dependence between the absorbed dose and distance of

the source of irradiation. In proton therapy this dependence is stated by a Bragg curve.

Analytical approximation of the Bragg curve

In the year of 1997 Thomas Bortfeld derived an analytical approximation of the Bragg curve for

proton beams (Bortfeld, 1997). The Bragg curve has been stated as a function of the initial kinetic

energy1 E0 that has been given to the particles in accelerator. In the consequence of collisions of

protons with ambient particles the energy of protons gradually decreases up to the distance R0, called

range, where the energy of exactly one half of protons, originally accelerated to E0, is equal to zero.

The physical meaning of the range R0 is shown in Figure 2.1.

z [cm]

0 5 10 15 20

D
=
D

m
a
x

[%
]

0

20

40

60

80

100

R0

zmax

Figure 2.1: Elementary parameters of the Bragg curve shown on the proton beam accelerated to the
initial kinetic energy E0 = 158.6 MeV.

The relation between the range and the initial kinetic energy can be found in tables, see e.g.

(Janni, 1982) or (Berger et al., 1993); or it can be approximated the Bragg-Kleemann rule:

1The physical unit of energy in quantum mechanics is MeV.
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R0 ≈ αEp
0 , (2.1)

where the proportionality factor α and the exponent of energy-range relation p are material properties

matching the experimentally measured values. The Equation (2.1) implies that the higher the initial

kinetic energy E0, the higher the range R0 of the Bragg curve and the more distant the depth zmax of

the Bragg peak. The impact of the initial energy on the range is shown in Figure 2.2. From Figure 2.3

it follows that the greatest ratio of the dose in the Bragg peak to the ’tail’ dose happens when the

range is short. Therefore, to save the healthy tissues surrounding the tumor the shortest path of the

beam is usually advantageous.

z [cm]

0 5 10 15 20 25 30

D
[G

y
]

#10!9

0
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100 MeV
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180 MeV
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Figure 2.2: Influence of the initial kinetic energy E0 on the dose in water.
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Figure 2.3: Influence of the initial kinetic energy E0 on the proportional dose in water.

We have already outlined that the range R0 of the proton beam is evaluated statistically, because

the range of individual protons differs and collisions of individual protons are random. Therefore,

even protons with equal initial kinetic energy E0 do not deliver the equal dose in the same depth z.

Bortfeld (Bortfeld, 1997) thus established a Gaussian spectrum σ evaluating the range straggling and
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the uncertainty of the kinetic initial energy of protons:

σ =

√(
α′
p3α2/p

3p− 2
R3−2p

0

)2

+ (0.01E0)
2
α2p2E2p−2

0 , (2.2)

where the constant α′ is a material property dependent on electron density (Bortfeld, 1997).

The resulting Bragg curve2 D is the sum of all Gaussian distributions along the depth z. The

resulting equation is thus

D(z, E0) = Φ0
e

−ζ(z,E0)2

4 σ(E0)1/pΓ(1/p)√
2π ρα1/p[1 + β(R0(E0))]

×

×
[

1

σ(E0)
P−1/p(−ζ(z, E0)) +

(
β

p
+ γβ +

ε

R0(E0)

)
P−1/p−1(−ζ(z, E0))

]
.

(2.3)

In Equation (2.3) there appear several types of variables. The first are material properties: in

addition to the already defined α and p, the material density ρ also belong to this variable group as

well as the fraction of primary fluence contributing to the ’tail’ of the energy spectrum ε, the slope

parameter of the fluence reduction relation β and the fraction of locally absorbed energy released

in nonelastic nuclear interactions γ. Specific values valid for water medium has been taken from

(Bortfeld, 1997). The above equation then includes variables dependent on the initial kinetic energy

E0, specifically the Gaussian spectrum σ and also ζ defined by the equation

ζ(z, E0) =
R0(E0)− z

σ
, (2.4)

where the symbol P denotes parabolic cylinder function (Weisstein, 2005). The shape of the resulting

Bragg curve is shown in Figure 2.1.

For the optimization of treatment plan the most important variable is the primary fluence3 Φ0.

Fleunce denotes the number of quantities of the radiation passing in one second through a unit surface

orthogonal to the direction of propagation of the quantities. The primary fluence is thus bounded

to the depth z = 0 cm. It should be noted that the dose D(z) is linearly dependent on the primary

fluence.

When assembling the treatment plan it is appropriate to place individual Bragg curves based on

the position of the peak zmax. We have thus approximated the relation between the initial energy E0

and the position of the peak, see Figure 2.4. The Bragg curves have been evaluated with a sufficient

precision of 0.1 mm in the range of 1 MeV up to 300 MeV, including thus all the energies commonly

used in proton therapy (Paganetti, 2012). The location of the Bragg peak, i.e. the variable zmax has

thus been evaluated with the precision of 0.1 mm.

Let us now begin with Equation (2.1) and the approximated relation given by a 4th level polyno-

mial. We can then write

R0 − z = a1E
4
0 + a2E

3
0 + a3E

2
0 + a4E0 + a5, (2.5)

where a1 through a5 are material constants. The equation is subsequently rewritten to

2The physical unit of dose is a Gray (Gy). One Gray corresponds to the absorption of 1 J of energy in 1 kg of the
material.

3The physical unit of fluence is (number of particles/s)/m2
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Figure 2.4: Dependence of R0 − zmax on the initial energy E0 in water medium.

zmax = αEp
0 − a1E

4
0 − a2E

3
0 − a3E

2
0 − a4E0 − a5. (2.6)

Comparing the hereby computed values of the Bragg peak with the values evaluated within the

precision of 0.1 mm using the Bortfelds relation in the range of 1 through 300 MeV we obtain the

margin of error equal to 0.029 mm. The results thus correspond to the selected precision.

Influence of inhomogeneities on the Bragg curve

We have already defined a one-dimensional Bragg curve in a water medium in such a way that it

is directly possible to control the position of the peak based on the initial energy of protons. This

section enhances the previous formulation to account for the changes of media and inhomogeneities.

Physicians have utilized the similarity of propagation of protons in water and in tissues. Subse-

quently, so called water equivalent (WET) has been introduced. WET is such a thickness of water

that has the same effect on the loss of energy of proton beam as the specified thickness of another

media in specific depth, see Figure 2.5.

Because the loss of the kinetic energy along the depth z is not constant, also the value of WET is

dependent on the depth. Moreover, it is a function of the media and of its thickness.

Let us again begin with the Bragg-Kleeman rule, see Equation (2.1). We can thus approximately

state the relation for kinetic energy of protons:

R0 − z = αE(z)p ⇔ E(z) =

(
R0 − z
α

)1/p

. (2.7)

The above relation is considerably approximate, as it obviously neglects range straggling defined by

Equation (2.2). It is thus not valid near the Bragg peak, but for the most of the depths it is sufficient.

To acquire the energy with higher precision it can be directly computed by numerical integration of

Bethe-Bloch equation (Olive et al., 2014):
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Figure 2.5: Influence of inhomogeneities on the shape of the Bragg curve. The upper Bragg curve has
a peak located in the depth of 25 cm and propagates only through water medium. The middle Bragg
curve has also a peak in the depth of 25 cm and propagates through water medium, but between the
depths 5 through 15 cm we have placed a bone. The last Bragg curve represents a situation where the
initial kinetic energy of the beam is equal to the middle Bragg curve but the medium is only water.

−
〈
dE

dz

〉
=

4πNAr
2
emec

2Z

A

1

β(E)2

[
1

2
ln

2mec
2β(E)2γ(E)2Tmax

I2
− β(E)2

]
, (2.8)

where NA denotes Avogadro’s number, i.e. the number of particles in unit substance amount; re stands

for classical electron radius, me denotes the mass of electron, c is the speed of light. Constant A denotes

the atomic weight, Z states for atomic number. I denotes ionization energy. The maximal kinetic

energy Tmax that can be transmitted from proton to a free electron in a single collision is computed

(Olive et al., 2014) as

Tmax =
2mec

2β(E)2γ(E)2

1 + 2γ(E)me/mp + (me/mp)2
, (2.9)

where mp stands for the mass of proton. All the remaining variables are functions of energy, hence

the integration has to be performed iteratively.

Based on the theory of special relativity we can compute the velocity of protons (Evans, 2008)

β(E(z)) =
v

c
=

√√√√1− 1(
1 + E(z)

mpc2

)2 , (2.10)
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and also the Lorentz factor γ:

γ =

√
1

1− v2

c2

=

√
1

1− β(E)2
. (2.11)

The water equivalent thickness is then formulated by modifying the Bethe-Bloch equation (2.8).

The final form is then (Zhang – Newhauser, 2009):

WET (E) ≈ tw = tm

(
ρ
Z

A

[
ln

2mec
2γ(E)2β(E)2

I
− β(E)2

])∣∣∣∣m
w

, (2.12)

where tw denotes the water equivalent thickness, tm the media thickness and ρ density.

The tissue does not consist of only one chemical element. To account for the real composition

of tissues we will introduce a so called effective atom, i.e. effective atomic weight and number; and

effective ionization energy of a slab or compound. The effective atomic weight is defined as (Hussein,

2003):

Aeff =

∑n
i=1NiA

2
i∑n

i=1NiAi
, (2.13)

where n denotes the number of components of the compound, Ni states for the number of atoms of

the ith component and Ai is the atomic weight of the ith component. The effective atomic number

can be stated by equation (Hussein, 2003):

Zeff = Aeff

n∑
i=1

NiZi

NiAi
, (2.14)

where Zi states for atomic number of the ith component.

The value of ionization energy I of specific component is uncertain, as it is difficult to measure.

In the paper (Zhang – Newhauser, 2009) there is presented an approximate relation:

I = kZ, (2.15)

k =


14.5, for Z ≤ 8

13, for 8 < Z ≤ 13

11, for Z > 13

, (2.16)

where Z denotes the atomic number of the specific chemical element and k is a constant dependent

on the atomic number.

For compounds the following relation is used (Coderre, 2004):

ln Ieff =

∑n
i=1NiZi ln Ii∑n

i=1NiZi
, (2.17)

where Ii denotes the ionization energy of the ith component.

Due to the linear dependence of the water equivalent thickness on the thickness of the medium tm

in Equation (2.12) and due to the consideration that the kinetic energy is a function of depth z, it

is obvious that the Bethe-Bloch equation is generally valid only for infinitesimally small thicknesses.
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Therefore, we have divided the thickness of the medium into multiple smaller subintervals to ensure

the required accuracy, see Table 2.1 for reference.

Medium E tm WETexp WETBK Errexp−BK WET Errexp−WET

[MeV] [mm] [mm] [mm] [%] [mm] [%]
Al 200 19.73 42.30 41.7 -1.42 41.861 -1.038

200 14.90 32.20 31.5 -2.17 31.614 -1.820
200 4.83 10.04 10.2 +1.59 10.249 +2.082
100 14.90 31.50 31.1 -1.27 31.357 -0.454
100 4.83 10.30 10.1 -1.94 10.166 -1.301

Table 2.1: Accuracy in the computation of WET. WETexp denodes experimentally measured data for
specified medium characteristics (Zhang et al., 2010), WETBK states for the value computed according
to (Zhang et al., 2010), the value WET denotes the WET computed based on the described theory.
Errexp-BK states the difference between WETexp and WETBK, Errexp-WET denotes the difference
between WETexp and WET .

Multiple scattering theory

In the years of 1947 and 1948 Moliere has published a theory describing the effect of random collisions

with ambient particles on the change of beam propagation direction. Gradually, Moliere introduced

single scattering theory (Molière, 1947), which has been followed by the multiple scattering theory

(Molière, 1948). Both the papers have been published only in German language. The English version

has been created by H. A. Bethe (Bethe, 1953), who published an article Moliere’s Theory of Multiple

Scattering, where some generalizations valid for compounds have been omitted (Paganetti, 2012).

Molier’s theory of multiple scattering is considered as the most precise but concurrently the most

complex, hence multiple trials have arose to simplify it.

Virgil L. Highland has introduced in the paper Some practical Remarks on Multiple Scattering

(Highland, 1975) a simple Gaussian approximation while preserving the sufficient precision. Highland’s

approximation is, however, valid only for small thicknesses. Therefore, B. Gottschalk has generalized

the formulation to account for thick targets (Gottschalk et al., 1993). The resulting equation is then

θ0 = 14.1q

(
1 +

1

9
log10

t

LR

)
×

[∫ t

0

(
1

p(E)v(E)

)2
dt′

LR

]1/2

, (2.18)

where θ0 denotes the characteristic multiple scattering angle, the constant q stands for the charge

number of incident particle (i.e. in the case of protons q = 1 eV), t denotes the thickness of medium

and LR the radiation length, p is the particle momentum and v the velocity. The velocity of the

particle can be computed from the kinetic energy, see Equation (2.10). Similarly, the momentum of

the particle is formulated as (Evans, 2008):

p(E) = γ(E)mpv(E), (2.19)

where γ denotes the Lorentz factor, see Equation (2.11), and mp stands for the mass of a single proton.

The last unknown variable, radiation length LR, can be computed by equation (Gupta, 2010)
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LR =
716.4

Z(Z + 1) ln 287√
Z

. (2.20)

Because the tissues consist of multiple components we have to define again an effective atom. In

the case of slabs the effective radiation length can be computed from the equation

t0ρ0

LR
=

n∑
i=1

tiρi
LR,i

, (2.21)

where ρi denotes the density of the ith slab, LR,i is the radiation length of the ith slab, ρ0 denotes

the effective density and t0 the total thickness. Simultaneously, the following equation is valid:

t0ρ0 =

n∑
i=1

tiρi. (2.22)

Similarly to slabs we can define effective atom for compounds:

AeffN

LR
=

n∑
i=1

AiNi

LR,i
, (2.23)

where n denotes the number of components of the compound and N states for substance amount.

Afterwards, we can finally approach to the calculation of the definite integral in Equation (2.18).

In this thesis Newton’s 3/8 method has been employed, see Appendix B. The literature (Gottschalk

et al., 1993) does, similarly, mention the implementation of the Simpson’s rule and a division of the

thickness t based on the range R0. The numerical comparison of both the approaches is shown in

Table 2.2.

The 2-dimensional Gaussian distribution is stated as:

f(θ) =
1√

2π θ0

e[− 1
2 ( θθ0

)2], (2.24)

where θ is the multiple scattering angle, see Figure 2.6. By integration of the function f(θ) in the

interval (−∞;∞) we, of course, obtain 1. The 3-dimensional version of the Gaussian distribution is

f(θ) =
1

2πθ2
0

e

[
− 1

2

(
θ
θ0

)2
]
. (2.25)

z

y

𝜃

Figure 2.6: The dependence of the multiple scattering angle θ on the depth z and on y.
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Let us consider the proton beam propagates not only in the direction of depth z but also in the

direction of orthogonal axis x and y. The geometry relation between the multiple scattering angle

and 3-dimensional vector space is defined as

tan θ =

√
x2 + y2

z
. (2.26)

The resulting dose in an arbitrary location in space is then computed as

D(x, y, z) = D(z)× 1

2πθ2
0

e

− 1
2

 arctan

√
x2+y2

z
θ0

2
. (2.27)

Medium Thickness4 θM θH ErrM−H θ0 ErrM−0

[g/cm
2
] [mrad] [mrad] [%] [mrad] [%]

Al 0.2160 3.701 3.534 -4.512 3.500 -5.431

0.8170 8.051 7.670 -4.732 7.428 -7.738

2.1729 13.880 13.104 -5.591 13.024 -6.167

3.3500 16.920 16.258 -3.913 16.823 -0.573

7.0960 28.357 26.931 -5.029 26.976 -4.870

11.9570 42.065 39.986 -4.942 39.607 -5.843

13.5690 42.422 40.534 -4.451 44.231 +4.271

17.7230 61.129 58.230 -4.742 59.329 -3.092

21.2450 91.129 87.103 -4.418 87.279 -4.225

21.9150 92.504 88.657 -4.159 104.860 +16.600

22.1100 98.021 93.645 -4.464 117.185 +19.551

Table 2.2: Comparison of accuracy in computation of the characteristic multiple scattering angle. θM

denotes the most accurate value computed by Moliér’s theory of multipple scattering. The value θH

is given in (Gottschalk et al., 1993) as a result of Highland’s approximation. The angle θ0 represents
values computed by implementation according to this thesis. ErrM−H denotes the percentage difference
between θM and θH, ErrM−0 states for the percentage difference between θM and θ0.

4The physical units of thickness are usually g/cm2, i.e. the actual thickness multiplied by density of the medium.
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Chapter 3

Multi-objective programming

Formulation of multi-objective programming

Multi-objective programming is a specific task of mathematical programming in which there exist

multiple conflicting objective functions optimized simultaneously. In reality these tasks are very

common. As an example one can use a purchase of a car – although there is a need to maximize

technical conditions and accessories of a car one tends to minimize costs for the purchase. If it was

considered only the first aspect (or objective), the object of the consequent purchase would have

probably been a new sports car with costs exceeding $200 000. In the case of only considering the

second objective – costs – one would end with a cheap car wreck. Nevertheless, none of these solutions

is in fact appropriate. The following pages try to describe how to choose a solution that is appropriate

to all the objective functions.

The problem can be generally defined as

min [f1(x), . . . , fq(x)],

x ∈ χ,
(3.1)

where x stands for design variables in n-dimensional design space χ ⊆ Rn. Similarly, objective

functions f(x) form q-dimensional objective space Υ ⊆ Rq. The shape of the design space is usually

specified implicitly by constraints.

χ := {x ∈ Rn : g(x) ≤ 0,

h(x) = 0}.
(3.2)

Dominated and non-dominated solution

By fulfilling the constraints given in Equation (3.2) we obtain two sorts of solutions (Jablonský, 2002).

Let there exist feasible solutions x(0), x(1) ∈ χ:

• Feasible solution x(1) dominates to feasible solution x(0) if for all objective functions fj(x),

j ∈ {1, . . . , q} applies fj(x
(1)) ≤ fj(x

(0)) and at least for one objective function fk(x) applies
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fk(x(1)) < fk(x(0)).

• If there does not exist any x(1) for which implies x(1) dominates x(0) then x(0) is called non-

dominated or Pareto-optimal solution.

This specifically means that there does not exist any feasible solution having all objective function

values better (i.e. lower) than for any non-dominated solution.

Pareto set and Pareto surface

The set of all feasible non-dominated design variables is called Pareto set. Similarly, the set of all

feasible non-dominated objective function values is called Pareto surface.

According to the shape we can distinguish between convex and non-convex Pareto set or Pareto

surface, for comparison see Figure 3.1.

f1(x)

f 2
(x

)

f 2
(x

)

f1(x)

Figure 3.1: Shape of Pareto surface. The left figure shows convex Pareto surface; the right figure
shows non-convex Pareto surface. Feasible objective space Υ is drawn in a gray color. Pareto optimal
solutions are rendered as red.

Multi-objective linear programming

If all the constraints g(x) and h(x) from Equation (3.2) and concurrently all the objective functions

f(x) from Equation (3.1) are linear, then it is possible to solve such problem by multi-objective linear

programming (MOLP).

Gale, Kuhn, Tucker (1951) considered a general linear program with a matrix objective function

and introduced theorems of existence and duality. Due to the fact that vector and scalar objective

functions are a special case of this program, this theory is generally considered as a base for linear

programming (Luptácik, 2009).

A multi-objective linear program can be written in the form

minCx : Ax ≤ b,

lb ≤ x ≤ ub,
(3.3)
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where C denoted the matrix of objective functions, with size n × q and each row representing one

objective function. Constraints are specified by matrix A with the size m×n and by a column vector b

of length m. Constant m stands for the count of constraints. Design variables x can be bounded by

a lower bound lb or by an upper bound ub.

The aim of addressing a MOLP problem is usually obtaining a particular non dominated solution,

eventually acquiring the whole Pareto set, because there does not frequently appear a situation with

a feasible globally optimal solution that is valid for all objective functions simultaneously. To solve

a MOLP problem it is possible to use several approaches. Some of them are described in the following

text.

Aggregation of objective functions

Aggregation of objective functions is a method based on evaluation of individual objective functions

by weights w followed by an assembly of aggregated objective function. The weights have to be

nonzero and positive. In many cases a condition that the total sum of weights is equal to one is also

added (Jablonský, 2002).

To permit aggregation of all the objective functions it is needed to unify their units, i.e. normalize

them.

Example

Let us assume a MOLP defined by Equation (3.3) and the following matrices:

C =

(
1 0

0 1

)
, A =

(
−3 −3

)
, b =

(
−5
)
, lb = 0, ub = 3. (3.4)

The problem can be divided into two subproblems according to the objective functions:

min z1 = x1 min z2 = x2

−3x1 − 3x2 ≤ −5 − 3x1 − 3x2 ≤ −5

0 ≤ x1 ≤ 3 0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 3 0 ≤ x2 ≤ 3

. (3.5)

The solution of the first subproblem is a point [0; 5
3 ]T and of the second subproblem a point [ 5

3 ; 0]T .

According to these two solutions it is possible to define a range of values of Pareto-optimal objective

functions – both are 〈0; 5
3 〉. Objective functions should be further normalized – each objective function

is divided by the length of the corresponding range of values of Pareto-optimal objective function. In

this particular example we can then write:

z1 =
x1
5
3

=
3

5
x1 z2 =

x2
5
3

=
3

5
x2. (3.6)

If there was not any information about the problem in advance the selection of weights w1 and w2

would be random. For this example it was chosen that w1 = 0.3 and w2 = 0.7. The condition of the

cumulated sum equal to 1 is also fulfilled. Let us now assemble the aggregated objective function:



CHAPTER 3. MULTI-OBJECTIVE PROGRAMMING 16

Cagg = w1 × (
3

5
x1 + 0x2) + w2 × (0x1 +

3

5
x2) = 0.18x1 + 0.42x2. (3.7)

By considering an aggregated objective function Cagg the optimal solution is a point [ 5
3 ; 0]T .

According to the shape of the polytope defining feasible values of objective functions (see Fig-

ure 3.2) it is possible to determine that for w1 ∈ 〈0; 0.5) and w2 ∈ (0.5; 1〉 the globally optimal

solution will always be just computed point [ 5
3 ; 0]T . Otherwise, if w1 ∈ (0.5; 1〉 and w2 ∈ 〈0; 0.5), the

globally optimal solution will be the point [0; 5
3 ]T . If both the weights are equal, i.e. w1 = w2 = 0.5,

the solution is defined as an edge connecting both the above listed points. According to the used

algorithm usually a vertex is obtained1.

The benefit of solving MOLP by aggregation of objective functions is mainly its simplicity. In case

of the need to get higher count of non-dominated solutions this method is not so useful because it is

difficult to determine relevant values of weights w to attain different non-dominated solutions. This

is however significant in more complex problems.

f1(x)
0 1 2 3 4

f 2
(x

)

0

1

2

3

4

Figure 3.2: The shape of Pareto surface. Objective space (here identical to design space) is colored
with gray. Non-dominated solutions are drawn by red line.

Compromise solution according to the maximal component

Considering compromise solution according to the maximal component δ approach we are searching

a non-dominated solution that minimizes the maximal (worst) component (objective). In the case of

maximization the minimal component should be maximized (Jablonský, 2002).

Example

Let us consider the same example defined by Equation (3.4). The normalized matrix of objective

functions is

Cnorm =

(
3
5 0

0 3
5

)
. (3.8)

We will now reformulate the initial linear program and introduce the maximal component δ:

1Simplex and dual-simplex algorithms always return a vertex of the polytope. Interior-point method can return any
point located on the edge.
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min δ : {Cnormx ≤ δ,

Ax ≤ b,

x ≥ 0,

δ ≥ 0}.

(3.9)

Solving the above problem considering the weights of individual objective functions w1 = 0.5 and

w2 = 0.5, we obtain the maximal component δ = 5
6 and a solution [ 5

6 ; 5
6 ]T , see Figure 3.3, where

the optimal solution is rendered as a blue square. The maximal deviation of the values of objective

functions is

(1− δ)× 100 = 16.7 %. (3.10)
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Figure 3.3: Compromise solution according to maximal component. Pareto-optimal solution are
displayed in a thick red line.
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Figure 3.4: Compromise solution according to maximal component – dominated solution.

The variation of weights then enables us to rotate the polytope defining the objective space along

the variable, whose weight has been changed, see the right image in Figure 3.3. Similarly to the

previous case we obtain a point [0; 5
3 ]T using the weights w1 ∈ (0; 0.5) and w2 ∈ (0.5; 1). Weights
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in interval w1 ∈ (0.5; 1) and w2 ∈ (0; 0.5) lead to an optimal solution [ 5
3 ; 0]T . If w1 = w2 = 0.5 the

optimal solution set is defined by the whole edge of the polytope. It should be noted, however, that

in the case that one weight is equal to 1 and the other is equal to 0, we can easily obtain a dominated

solution not located on Pareto surface as shown in Figure 3.4.

Minimization of the distance from ideal values

The method of minimization of the distance from ideal values searches a compromise solution that

minimizes the weighted sum of deviations from ideal values of individual objective functions.

The ideal values of individual objective functions are denoted by zopt
1 , zopt

2 , . . . , zopt
q , respectively.

Their values can be obtained solving the MOLP defined by Equation (3.3) independently for all of

the objective functions (Jablonský, 2002).

Example

Let us consider a linear program difined by Equation (3.4). We have also chosen w1 = 0.6 a w2 = 0.4

as the weights of objective functions.

Firstly, we compute the ideal values, i.e. the optimal values for individual objectives. Thus, we

obtain the points zopt
1 = [0; 5

3 ]T and zopt
2 = [ 5

3 ; 0]T . Note that in this case the design space is equal to

the objective space.

Afterwards, the objective functions are normalized:

Ckom =

q∑
i=1

wi(cix− zopt
i ) = 0.6× (

x1
5
3

− 0
5
3

) + 0.4× (
x2
5
3

− 0
5
3

) = 0.36x1 + 0.24x2. (3.11)

Consequently, we will solve a simple linear program:

minCkom : {Ax ≤ b,

x1, x2 ≥ 0},
(3.12)

which yields an optimal solution [0; 5
3 ]T , see Figure 3.5, where the optimal solution is drawn as a blue

square.

The advantage of the presented approach is the ability to obtain solutions that are balanced (in

objective functions), especially when the Pareto surface is rugged. The drawback is, however, that

the optimal solution is still dependent on properly chosen weights. Also, to preserve the linearity

in the problem formulation only the weighted sums of individual components of distance vector are

minimized and not the real scalar value of the length.

Goal programming

The base of goal programming are goals stating multiple target values we want to achieve. According

to (Jablonský, 2002) goals can be divided into:
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Figure 3.5: The shape of the objective space of the presented example of minimization of the distance
from ideal values. The red color represents Pareto-optimal solutions.

• Fixed goals express a constraint that have to be fulfilled (hard constraints). If it is impossible

to satisfy fixed goals the solution of linear program is infeasible, i.e. a feasible design set is

empty. Fixed goals are written in form of constraints:

Ax ≤ b. (3.13)

• Free goals are constraints (mild constraints) expressing specific balance levels between left and

right side of (in)equalities. The deviations are in forms of negative deviational variable δ− and

positive deviational variable δ+. Negative deviational variable represents the level by which the

target level is under-achieved. Positive deviational variable represents the level by which the

target level is over-achieved (Jones – Tamiz, 2010, pg. 11). Both the deviational variables are

constrained to be non-negative. It is then possible to write:

Ax ≤ b+ δ+ − δ−. (3.14)

In goal programming the objective function connects all the deviational variables and is usually

written in form of an achievement function minimizing the cumulated sum of all deviational variables.

Other used objectives minimize the maximal deviation or a weighted sum of all deviations to express

their importance.

Example

Assumed MOLP is written in form:

maxCx : Ax ≤ 0. (3.15)

C =

(
1 0

0 1

)
, A =

(
1 3

2 1

)
, b =

(
4

5

)
, x1 ≥ 0, x2 ≥ 0. (3.16)

Ideal (or target) value is considered to be an optimum of each individual objective. By solving the
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LP with the first objective the optimal solution is [2.5; 0]T . While evaluating the second objective the

solution of the same LP is [0; 4
3 ]T . Therefore the unfeasible ideal solution is a point with coordinates

[2.5; 4
3 ]T .

The goals are then expressed in the form of deviational variables and the MOLP is thus rewritten

to:

min (δ−1 + δ−2 ) : {Ax ≤ b,

x1 = 2.5− δ−1 ,

x2 =
4

3
− δ−2 }.

(3.17)

The resulting compromise solution is a point [2.2; 0.6]T ; values of deviational variables are δ−1 = 0.3

a δ−2 = 0.733, see Figure 3.6.

x1

0 1 2 3

x
2

0

0.5

1

1.5

2

/1

0 1 2 3

/ 2

0

0.5

1

1.5

2

Figure 3.6: The shape of design space and objective space formed by deviational variables. Red color
indicates Pareto-optimal solutions.

Benson’s algorithm

Benson’s algorithm is based on the assumption that if the total count of objectives is significantly

lower than the count of design variables, i.e. q = dim(Υ) � n = dim(χ), it is assumed that multiple

points located on Pareto set χE will be projected into one point located on Pareto surface ΥE. Be-

cause of this reason Benson have considered that obtaining Pareto surface should be significantly less

computationally demanding than obtaining Pareto set (Benson, 1998).

The decision maker also chooses the specific compromise Pareto-optimal solution mainly based

on objectives’ values, it is therefore not important to obtain the whole Pareto set. Benson therefore

suggested a method to solve MOLP in the objective space.

Let’s consider there exist a Pareto surface ΥE (i.e. a set of all compromise solutions in objective

space) and a set of all feasible solutions in objective space Υ ⊆ Rq. It is then possible to choose Υ′

such that ΥE ⊆ Υ′ ⊂ Rq. The polytope Υ′ has to be bounded2.

Subsequently it is possible to compute an interior point p of polytope Υ and an ideal point yI,

which is defined as:

2In case that the objective space is not bounded it is needed to create such artificial constraints to bound the polytope
that the output of optimization is not affected.
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yI = min{y : y ∈ Υ′}. (3.18)

The ideal point is not located in the polytope Υ, it has a lower value than all feasible members of

the polytope: yI < y ∈ Υ. One can then build a vector −−→pyA connecting the interior point with the

ideal point and find a minimal scalar ρ ∈ 〈0.1〉, such that

min (ρ) : p+ ρ×−→pyI ≥ Cx. (3.19)

Because of the fact that the shape of feasible objective space and subsequently also the shape of

Pareto surface is always convex3 there does exist only one non-dominated solution.

The basis for the next part is a pair of primal and dual LPs:

P (y) = min (z) : Ax ≤ b, Cx− z ≤ y, (3.20)

D(y) = min (bTu+ yTw) : ATu+ CTw ≤ 0,
∑

w ≥ 1, u ≥ 0, w ≥ 0. (3.21)

Dual solution of the primal problem (3.20) or the primal solution of the dual problem (3.21) yields

values of dual variables u and w, which are used to build a cutting (hyper)plane defined as

H(u,w) = {y ∈ Rq : 〈w, y〉 = 〈b, u〉}. (3.22)

Cutting hyperplanes H subsequently crop the polytope Υ′ so the initial condition ΥE ⊆ Υ′ is still

valid. The shape of polytope Υ′ is saved in a form of linear inequalities. Considering that the shape

of the initial polytope Υ′ is described by inequalities A′y ≤ b′, then the cropped polytope is updated

to

[
A′

−w

]
y ≤

[
b′

bTu

]
. (3.23)

From the above linear constraints (3.23) it is possible to obtain all vertices s of the polytope.

According to (Shao et al., 2008) we can use the on-line vertex enumeration approach described in

(Chen et al., 1991). In this thesis we have, however, used an already written function con2vert by

Michael Kleder (Kleder, 2005).

The vertices s are divided into two groups: vertices inside Υ and vertices not inside Υ. Vertices

that are solving the initial LP, i.e. the first group, are also members of ΥE – they are Pareto-optimal

solutions. Vertices in the second group that are not solving the initial LP are used as a repetitive

input into (3.19) instead of the ideal point yI. The described algorithm is repeated until all vertices

s are members of Υ and the whole shape of Pareto surface is thus obtained.

It is proven that the iteration count of Benson’s algorithm is finite. According to (Shao et al.,

2008) it is possible to introduce an approximate solution of Benson’s algorithm gaining a significant

speedup. This modification is however not used in this thesis.

3Because the constraints of LP are linear.
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Parallelization of Benson’s algorithm

In a recent decade there have been a significant growth in the spread of multi-core processors, which

subsequently led into the possibility of parallelization of algorithms. An ideally parallelized algorithm

gain a speedup linear to the number of processors.

Benson’s algorithm consists of the main iteration while cycle. Inside the while cycle there are

two for cycles:

• Cycle 1: Computation of non-dominated solutions in directions defined by vectors −→sp, see Equa-

tion (3.19), and subsequent construction of cutting hyperplanes, see Equation (3.20) or (3.21).

• Cycle 2: A check that the computed vertices s of the polytope Υ′ are solutions of the initial

LP, i.e. are located in Υ.

An important assumption for parallelization of the algorithm is a mutual independence within

individual mathematical operations. Because the above condition is satisfied and also the count and

the size of output variables is known in advance, it is an ideal part of the algorithm to be parallelized.

In MATLAB environment the algorithm has been parallelized by the usage of two parfor cycles.

Example

An MOLP example is defined by Equation (3.3) and by the following matrices:

C =

(
1 0

0 1

)
, A =

−2 −1

−1 −3

−3 −3

 , b =

−2

−2

−4

 , x1, x2 ≥ 0. (3.24)

As the ideal point in the objective space it was computed the point yI
0 = (0; 0)T because of the

condition of non-negative values of both the variables. Also, we computed an arbitrary interior point,

e.g. p = (2; 2)T .

This specific MOLP does not however specify any upper bound, thus the polytope Υ′ is not

bounded, i.e. f1(x) ∈ 〈0;∞) and f2(x) ∈ 〈0;∞). To upper-bound the objective space we add the

constraints

∀f(x) ≤ 1000, (3.25)

which do not influence the shape of Pareto surface. Subsequently, we build the polytope Υ′ containing

the Pareto surface ΥE:

Υ′ :

{ 0 ≤ f1(x) ≤ 1000,

0 ≤ f2(x) ≤ 1000

}
. (3.26)

In the first iteration we solve Equation (3.19) and thus obtain a scalar ρ = 2
3 . Consequently, we

can compute y1 = ( 2
3 ; 2

3 )T .

Solving Equation (3.21) we get dual variables u = ( 1
3 ; 0; 0; 0; 0)T and w = ( 2

3 ; 1
3 )T . According to

Equation (3.23) the shape of the polytope Υ′ is updated (see the second iteration in Figure 3.7):
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Υ′ :

{ ∀f(x) : 0 ≤ f(x) ≤ 1000

−2

3
f1(x)− 1

3
f2(x) ≤ −2

3

}
. (3.27)

The updated polytope consists of vertices s and the upper-bounding vertices are removed. For all

remaining vertices s it is checked whether they are located in the set of all feasible solutions in the

objective space:

min[0; 0] : {Ax ≤ b, C = s}. (3.28)

If Equation (3.28) is feasible, then the vertex s (i.e. in this case the point [0; 2]T ) is a non-dominated

solution of the initial MOLP. Otherwise if the LP is infeasible, the algorithm is run again with yI =

s, scalar ρ is computed etc.
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Figure 3.7: Sample iteration progress of Benson’s algorithm applied on a simple example.

In the subsequent iterations we obtain all the vertices defining the Pareto surface: [0; 2]T , [1; 1
3 ]T ,

[ 2
3 ; 2

3 ]T and [2; 0]T .
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The algorithm terminates only if all the vertices s are in the polytope Υ, i.e. the whole Pareto

surface is found (see the condition after the third iteration in Figure 3.7).

Non-dominated solutions uniformly distributed on the Pareto surface

The decision maker cannot, however, visit the infinite amount of solutions defining the Pareto surface.

Therefore, we have developed an algorithm to compute uniformly distributed solutions on the Pareto

surface, describing thus its inner approximation.

According to Equation (3.19) it is possible to find a non-dominated solution in a direction specified

by the vector −→pyI. By solving the above equation for different directions we obtain unique Pareto-

optimal solutions, that are located either in vertices, edges or facets of the polytope.

At first it is needed to obtain border points defining the shape of the Pareto surface. The border

points are the extreme points of the Pareto surface, e.g. their all except one coordinates are equal to

zero. Consequently, it is possible to construct a hyperplane defined by the extreme points.

The hyperplane then forms two half-spaces, one containing the ideal point yI and the other contain-

ing the anti-ideal point (or in the case of an unbounded problem the unbounded solution). Therefore,

if we add a constraint defining the half-space containing the anti-ideal point to the original MOLP,

the whole Pareto surface will be cut off. Although the solution of such a problem is not anyhow useful

for the treatment itself, it is ensured that if we solve the modified problem by Benson’s algorithm

it will be very fast (it will take exactly 2 iterations). The convex hull of the resulting vertices then

describes the actual shape of the Pareto surface.

Let us now consider the hyperplane constrained by a convex hull obtained by Benson’s algorithm.

On the resulting facet a random point generator, see (Devroye, 1986) and (Myšáková, 2013), generates

random distribution of points. Due to the randomness of their location it is needed to ensure their

uniform distribution. In this thesis we have used a modified version of the algorithm distmesh,

see Appendix A or (Tyburec, 2014a). The used algorithm secures that the resulting distribution is

uniform.

In the following step the ideal point is computed. According to Equation (3.19) we build direction

vectors −→pyI connecting the uniformly distributed points p on the hyperplane and the ideal point yI.

By solving the LP (3.19) we obtain non-dominated solutions, i.e. points on the Pareto surface. By

computation of the convex hull defined by the uniformly distributed non-dominated solutions we

obtain an inner approximation of the Pareto surface with all the points located exactly on the Pareto

surface.

Example

Let us consider a MOLP described by Equation (3.3) and the matrices:

C =

1 0 0

0 1 0

0 0 1

 , A =


−3 −2 −5

−2 −1 −1

−1 −1 −3

−5 −2 −4

 , b =


−55

−26

−30

−57

 , ∀x ≥ 0. (3.29)
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A consecutive solution of the MOLP with objectives C1 = (10−6; 1; 1)T , C2 = (1; 10−6; 1)T and

C3 = (1; 1; 10−6) leads to the maximal values of the Pareto-surface: [30; 0; 0]T , [0; 30; 0]T and [0; 0; 26]T .

All these points are drawn in black in Step 1 in Figure 3.8. The above three points also define a plane

(see Step 1 in Figure 3.8):

x+ y +
15

13
z − 30 = 0. (3.30)

Figure 3.8: Solution process of obtaining uniformly distributed solutions on Pareto surface.

The equation defining the plane is then added to the initial MOLP:

− x− y − 15

13
z ≤ −30 (3.31)

Note that the ideal point yI = [0; 0; 0] is not solving Equation (3.31). The MOLP defined by (3.29)

and (3.31) is solved by Benson’s algorithm, from which the convex hull defining the feasible objective

space is obtained.

On the resulting facet random points are generated (see Step 2 in Figure 3.8). The uniformity is
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secured by the usage of algorithm distmesh. Uniformly distributed points on the plane and the ideal

point yI form direction vectors −→pyI (see Step 3 in Figure 3.8).

Finally, for each vector −→pyI Equation (3.19) is solved and the unique Pareto-optimal solution (see

Step 4 in Figure 3.8) is found.

Generation of convex hull defined by just computed Pareto-optimal solutions then yields an inner

approximation of the Pareto surface.
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Chapter 4

Optimization of proton therapy

treatment plan

A proton therapy treatment plan is a certain recipe defining from which direction(s) and by what

intensity the patient should be irradiated. Firstly, a 3-dimensional model of tissues surrounding the

tumor is obtained using computed tomography (CT) or magnetic resonance (MRI).

Radiation oncologists then mark all volumes of interest (VOI) – Organs at Risk (OARs) and the

tumor (TAR) – by contour lines. The aim of the irradiation is to deliver such a dose DTAR,min to the

tumor, that the cancer cells are destroyed or sufficiently damaged (Hynková, Doleželová, Šlampa). It

is also usually not possible to avoid irradiation of surrounding healthy tissues. To reduce the number

of constraints in the optimization problem formulation, i.e. to avoid prescribing a maximal dose for

normal tissues, it is usually defined a specific maximal dose in the tumor DTAR,max (Petit, Seco,

Kooy, 2013), having the similar effect. For OARs it is defined a maximal dose DOAR,max, such that

the damages and the long-term consequences of irradiation on the critical organs are limited.

Formulation of the optimization problem

In the direction of the propagation of radiation, i.e. in the depth z, the dose can be described by

Equation (2.3), which shows that the dose D is linearly dependent on the primary fluence Φ0. In

other words it is possible to write

dj =

n∑
i=1

Φ0,ijD
∗
ij , (4.1)

i.e. the dose in voxel j is equal to the contribution of n individual beams. The dose D∗ij stands for

the dose caused by one particle.

Objective function

In the literature several objective functions are used. Most commonly, a quadratic objective function

is used (Pflugfelder et al., 2008):
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F (Φ0) =
1

NTAR

NTAR∑
l=1

pl,u[DTAR,min,l −Dl(Φ0,l)]
2 +

1

NTAR

NTAR∑
l=1

pl,o[DTAR,max,l −Dl(Φ0,l)]
2+

+
1

NOAR

NOAR∑
m=1

pm,o[DOAR,max,m −Dm(Φ0,m)]2, (4.2)

where NTAR stands for the count of targets and NOAR for the count of OARs. The prescribed

dose is denoted as Dpres. For each VOI there is also defined a penalty function p, describing either

the overdose level po or underdose level pu. The penalty function thus specifies the importance of

individual criteria.

Such function can be easily extended into a multi-objective formulation, where each TAR is de-

scribed by two objectives – first two addends in Equation (4.2) – and each OAR is then addressed by

the objective function equal to the last addend in Equation (4.2).

The above formulation is useful because of its convexity (Shao et al., 2008), thus locally optimal

solution is also globally optimal (Paganetti, 2012). Another advantage is the simplicity to implement

DVH constraints. The main disadvantage is the fact that the weighting factors of individual criteria

do not have any clinical meaning and the choice is arbitrary (Shao et al., 2008).

The objective function has been also written in a linear form, hence linear programming can

be used (Shepard et al., 1999). The advantage of such approach is the fact that it always generates

globally optimal solution and the computation is fast. The LP does however often produce degenerated

solutions (i.e. the vertices of objective space), which are clinically not acceptable. Therefore, a multi-

objective approach needs to be applied. Note that it is also hard to implement DVH constraints, see

(Shao et al., 2008) for details.

Linear program formulation

Optimization of a proton therapy treatment plan can be formulated as a linear program (LP) minimiz-

ing the cumulated sum of all primary fluences, which can be equivalently described as the minimization

of the total amount of irradiated protons:

min

n∑
i=1

Φ0,i :

n∑
i=1

Dij(Φ0,i) ≤ DOAR,max,

n∑
i=1

Dij(Φ0,i) ≥ DTAR,min,

n∑
i=1

Dij(Φ0,i) ≤ DTAR,max,

∀Φ0,i ≥ 0,

(4.3)

where n stands for the total count of beams. All conditions are rechecked in each voxel j independently.

If the LP is feasible, globally optimal solution will be obtained. In most cases the LP is, however,

infeasible due to prescribed conflicts in constraints.

The LP is therefore modified into a linear goal program with one-sided free goals, see Section 3.2.4.
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For the tumor it is introduced a deviational variable δTAR,min indicating the level of under-achievement

of the minimal required dose in the tumor DTAR,min and a deviational variable δTAR,max indicating

the level of over-achievement of the maximal required dose in the tumor DTAR,max. Dose in OARs

is described by a deviational variable δOAR,max indicating the level over-achievement of the maximal

required dose in OAR DOAR,max. The meaning of all the deviational variables is showed in Figure 4.1.

The LP is then actually minimizing a penalty function of the cumulated sum of deviational variables.

Finally, the LP is written as:

min
∑

δ :

n∑
i=1

Dij(Φ0,i) ≤ DOAR,max + δOAR,max,

n∑
i=1

Dij(Φ0,i) ≥ DTAR,min − δTAR,min,

n∑
i=1

Dij(Φ0,i) ≤ DTAR,max + δTAR,max,

∀Φ0,i ≥ 0,

∀δ ≥ 0.

(4.4)
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Figure 4.1: Free one-sided goals in optimization of proton therapy treatment plan. Red color symbol-
izes OAR, green color denotes the tumor.

Although the LP (4.4) is always feasible the resulting solution is mostly degenerated, i.e. one or

more deviational variables are equal to zero. It is also preferred to have the ability to choose a custom

trade-off between the deviational variables according to DVH.

Selection of an appropriate solution

To obtain more non-dominated solutions which give the possibility to a decision maker to choose the

most appropriate one, all the methods described in Section 3.2 describing MOLP can be used.

Obtained Pareto-optimal solutions can be divided into three groups:



CHAPTER 4. OPTIMIZATION OF PROTON THERAPY TREATMENT PLAN 30

• Vertex of the polytope. From the analysis of previously done optimizations it seems that the

most of the vertices of the objective space are degenerated solutions of the MOLP.

• A point on an edge of the polytope. The solution is degenerated only if the edge is

connecting two vertices with the same degenerated deviational variable.

• A point on a facet of the polytope. The solution is not degenerated if it is not simultaneously

located on the degenerated edge of the polytope.

From the above division it is clear that the most favorable solutions are the ones located on the

facets of the polytope. If the solutions are distributed uniformly, the shape of the Pareto surface is

sufficiently described. Moreover, the uniformly distributed solutions can offer a sufficient possibility

of selection. Therefore, theory described in Section 3.2.6 is used. The precision of such an algorithm

is indirectly controlled by the number of uniformly distributed points. Each unique Pareto-optimal

solution requires solving just one LP. To compare the inner-approximation with the exact Pareto

surface Benson’s algorithm has been used, see Section 3.2.5.

Examples of optimization

This section shows some optimization problem solved with the presented methodologies. Firstly, a

LP defined by (4.3) is considered and subsequently, a LP with one-sided free goals is used (see Equa-

tion (4.4)). The problem is finally extended to a MOLP and Besnon’s algorithm and the uniformly-

distributed-Pareto-optimal-solutions-method are used.

Minimization of primary fluences

Both the following two examples of a 1-dimensional optimization are solved as LPs based on Equa-

tion (4.3). The LPs are feasible only because of the appropriate constraints.

1D example – one-sided irradiation

The simplest example is a LP with only two design variables Φ1 a Φ2, see Figure 4.3. Two Bragg

peaks are gradually placed into depths 24 and 28 cm. The OAR is located between 10 and 15 cm,

the maximal allowed dose is DOAR,max = 5 Gy. Tumor is located in the depths between 20 and 28

cm. The maximal dose in tumor is prescribed to be equal to DTAR,max = 10 Gy, the minimal dose in

tumor is DTAR,min = 5 Gy. All the above conditions are checked within 1 cm precision.

Firstly, individual Bragg curves in significant depths are computed:

Curve OAR(15) T(20) T(21) T(22) T(23) T(24) T(25) T(26) T(27) T(28)

1 1.089 1.330 1.447 1.623 2.073 2.940 0.798 0.007 0.000 0.000

2 0.978 1.066 1.098 1.139 1.195 1.271 1.383 1.568 1.978 2.657

Table 4.1: 1D example of one-sided irradiation. Dose is computed only in depths, where the constraints
are checked.

Subsequently, the inequalities are assembled:
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OAR: 1) 1.089Φ1 + 0.978Φ2 ≤ 5

TAR: 2) 1.330Φ1 + 1.066Φ2 ≥ 5 11) 1.330Φ1 + 1.066Φ2 ≤ 10

3) 1.447Φ1 + 1.098Φ2 ≥ 5 12) 1.447Φ1 + 1.098Φ2 ≤ 10

4) 1.623Φ1 + 1.139Φ2 ≥ 5 13) 1.623Φ1 + 1.139Φ2 ≤ 10

5) 2.073Φ1 + 1.195Φ2 ≥ 5 14) 2.073Φ1 + 1.195Φ2 ≤ 10

6) 2.940Φ1 + 1.271Φ2 ≥ 5 15) 2.940Φ1 + 1.271Φ2 ≤ 10

7) 0.798Φ1 + 1.383Φ2 ≥ 5 16) 0.798Φ1 + 1.383Φ2 ≤ 10

8) 0.007Φ1 + 1.568Φ2 ≥ 5 17) 0.007Φ1 + 1.568Φ2 ≤ 10

9) 0.000Φ1 + 1.978Φ2 ≥ 5 18) 0.000Φ1 + 1.978Φ2 ≤ 10

10) 0.000Φ1 + 2.657Φ2 ≥ 5 19) 0.000Φ1 + 2.657Φ2 ≤ 10

Non-negativity of fluences: 1.000Φ1 + 0.000Φ2 ≥ 0

0.000Φ1 + 1.000Φ2 ≥ 0. (4.5)

The objective function is then defined as

f = min (Φ1 + Φ2). (4.6)

Such a simple LP can be solved also graphically. The design space generates a two-dimensional

plane R2. The plane is then constrained by the above inequalities.
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Figure 4.2: Constraints in the 1D proton therapy treatment plan optimization. Gray color represents
the set of all feasible solutions.

Figure 4.2 clearly shows that the polytope is constrained by four active constraints (1, 10, 11 and

17). The constraints define four intersections, see Table 4.2.
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Bod Φ1 Φ2 f = Φ1 + Φ2

A1 0.744 3.764 4.508

A2 1.210 3.183 4.393

A3 1.212 3.764 4.976

A4 1.735 3.181 4.916

Table 4.2: Vertices of the polytope.

Based on the computed values of the objective function in the specified four points the global

minimum is located in the point A2 with the objective 4.393. Subsequently, the globally optimal

solution fulfilling all the prescribed constraints is Φ1times multiplication of the Bragg curve with the

peak in the distance of 24 cm and a Φ2times multiplication of the Bragg curve with the peak in the

distance of 28 cm. The result of the optimization is shown in Figure 4.3. Figure 4.4 then represents

DVH1 of the resulting plan.
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Figure 4.3: Globally optimal solution of a simple 1D treatment plan.
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Figure 4.4: Globally optimal solution of a simple 1D treatment plan – DVH of the tumor.

1Dose-Volume Histogram indicates the percentage of volume V that receives at least the dose D.
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1D example – double-sided irradiation with the effect of inhomogeneities

In the second example, shown in Figure 4.5, the effect of inhomogeneities in considered. In the depths

10− 15 cm and 35− 40 cm bones are located. The tumor is placed between the depths 20 and 30 cm

and is irradiated from the both directions, i.e. from depths 0 and 50 cm, respectively. The maximum

allowed dose in the tumor is prescribed to be DTAR,max = 10 Gy, the minimum dose in the tumor is

required to be DTAR,min = 5 Gy. An organ at risk, located between depths 10 and 15 cm, should not

receive a dose higher than DOAR,max = 1 Gy.
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Figure 4.5: Optimal 1D treatment plan accounting the effect of inhomogeneities and double-sided
irradiation.

Linear goal programming

This section presents an example that is not feasible using the previous formulation, see Equation (4.3).

The resulting plan does, however, fulfills at least one of the constraint exactly.

1D example – double-sided irradiation

Let us consider irradiation from the depths z1 = 0 cm and z2 = 50 cm; and the tumor in the depths

20 − 28 cm. The required minimum and maximum doses in the tumor are DTAR,min = 5 Gy and

DTAR,max = 10 Gy, respectively. Two organs at risk are prescribed in the depths of 10 − 15 cm and

35− 40 cm, both are assigned the same maximal dose DOAR,max,1 = DOAR,max,2 = 1 Gy.
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Figure 4.6: Optimal 1D treatment plan optimized using linear goal programming. Double-sided
irradiation.

The linear program (4.4) gives the optimum shown in Figure 4.6. From the figure it follows that

using the formulation (4.3) we would not obtain any solution, because the problem is infeasible – it is

either needed to exceed the maximal required dose in any of the OARs or not to achieve the required

dose in the tumor. The optimum obtained by linear goal programming exceeds the maximal dose in

both of the OARs, but concurrently fulfills the prescribed minimal dose in the tumor.

Multi-objective linear goal programming

The multi-objective linear programming enables the decision maker to choose the most appropriate

solution among the set of non-dominated (compromise) solutions.

Usually, the decision maker can prescribe a large amount of Pareto-optimal solutions. Therefore,

a simple user interface in MATLAB has been implemented enabling the decision maker to graphically

select the most appropriate plan based on the deviational variables, i.e. the level of exceeding of

individual prescribed doses. The decision maker is thus also given the idea of what will be achieved

by using another non-dominated solution, as the deviational variables are given a real physical mean-

ing. Also, the 1D implementation enables us to display multiple optimal solutions concurrently for

a comparison.

The user interface does indeed display the DVHs for all the OARs and the tumor(s) to enable the

decision maker to evaluate the uniformity of the dose, as this aspect also influences the selection of

the most appropriate treatment plan.

In the case of only two or three objective functions it is possible to display either full or approx-

imated version of Pareto surface. If the number of objectives is greater than three then the Pareto

surface cannot be effectively displayed an thus all the non-dominated solutions are shown as all the

two or three dimensional combinations of the total count of dimensions of the objective space.

1D example – double-sided irradiation

Let us consider the last example from the previous section. Also, we will not evaluate the DTAR,max,

as it does not have any effect on the results (i.e. the associated objective function is always equal to
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Figure 4.7: Implementation of the user interface for displaying results of 1D multi-objective linear
goal program.
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zero). Overall, three objective functions are being evaluated: δTAR,min, δOAR,max,1 and δOAR,max,2.

The result of the created program is shown in Figure 4.7, actually, four optimal non-dominated

solutions are displayed concurrently: the solid line denotes a solution with the objectives δTAR,min

and δOAR,max,1 equal to zero. The dotted line denotes a solution with null objectives δOAR,max,1 and

δOAR,max,2. The dashed line represents a solution when both the δTAR,min and δOAR,max,2 objectives

are equal to zero. Therefore, the already described solutions apparently serve as the extreme solutions

defining the boundary of the Pareto surface. As the last non-dominated solution we have chosen

a point that is located on one of the facets of the Pareto surface, i.e. none of the objectives is equal

to zero. This solution is displayed by a dash-dot line.

Secondly, the program enables us to render the Pareto surface, see Figure 4.8. From the figure

it implies all the vertices of the Pareto surface (177 black points) are located on the frontier of the

objective space; and the edges of the Pareto surface lying in planes δOAR,max,1 = 0 and δOAR,max,2 = 0

are straight, forming thus lines. The intersection of the Pareto surface and the plane δTAR,min = 0 is,

on the contrary, not straight.

The red points in Figure 4.8 denote non-dominated solutions uniformly distributed on the Pareto

surface generated by the modified distmesh algorithm. It should be noted that due to the clarity of

the resulting image we have not displayed points located on the edge of the Pareto surface.
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Figure 4.8: Implementation of the user interface for displaying the results of linear goal program –
Pareto surface.

3D example – one-sided irradiation

In the 3D case the tumor is irradiated from a plane defined by the plane equation ax+ by+ cz+d = 0

in a direction specified by a directional vector ~u = (x, y, z). The geometry of the environment and of
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Figure 4.9: Implementation of the user interface for displaying results of the multi-objective linear
goal program for the 3D treatment plan. The cut at plane x = 9.75 cm is displayed. The red color
denotes OAR, the green color represents the tumor.
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anatomically important structures (TAR and OAR) is described by linear inequalities. Although the

structures are generally non-convex, they can be still assembled from multiple convex parts.

We will now evaluate a simple treatment plan defined by limit valuesDTAR,min = 20 Gy, DTAR,max =

40 Gy and DOAR,max = 5 Gy and by geometry of the surroundings of the tumor:

TAR : z ≥ 8 ∧ z ≤ 10

x ≥ 8 ∧ x ≤ 10

y ≥ 5 ∧ y ≤ 7

OAR : z ≥ 6 ∧ z ≤ 8

x ≥ 8 ∧ x ≤ 10

y ≥ 5 ∧ y ≤ 7

Cyclotron : ~u = (0; 0; 1)

x+ y + 0z − 8 = 0. (4.7)

The optimized treatment plan is shown in Figure 4.9. Because the objective δTAR,max is degener-

ated (null), again, the number of objectives is reduced to two – δTAR,min and δOAR,max. The shape of

the Pareto surface is shown in Figure 4.10.
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Figure 4.10: Implementation of the user interface for displaying results of the multi-objective linear
goal program for 3D treatment plan – 2D Pareto surface.

3D example – double-sided irradiation

The last example presents an optimization of a 3D treatment plan comprising the irradiation from

multiple, here two, directions. The location of the tumor and of the OAR is the same as in the

previous section, the only difference is the location of the cyclotron:
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Cyclotron : ~u1 = (0;−0.2; 0.7)

~u2 = (0; 0.3; 0.7)

0x+ 1y + 4z − 10 = 0. (4.8)

We evaluate the objective functions δTAR,min and δOAR,max and the result is similar to the previous

example – the Pareto surface can be described as a linear combination of two extreme solutions, see

Figure 4.11 and Figure 4.12. The cut is taken through x = 9.75 cm.
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Figure 4.11: 3D treatment plan accounting double-sided irradiation. The non-dominated solution
shown in the figure conserves the required dose DTAR,min.
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Figure 4.12: 3D treatment plan accounting double-sided irradiation. The non-dominated solution
shown in the figure conserves the required dose DOAR,max.
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Time demands of the optimization using Benson’s algorithm

All the listed examples of optimization have been evaluated on a common computer2. The results in

Table 4.3 are valid only for the non-parallel and parallel version of Benson’s algorithm. The times of

uniform distribution of solutions on the Pareto surface have not been exactly measured yet, but the

implementation reaches significant speedup compared to the Benson’s algorithm.

The results in Table 4.3 implies that the time, respectively computational demands, of Benson’s

algorithm are dependent on the count of inequalities Nconstr. – i.e. the sizes of VOIs (the tumor size

VTAR and the OARs size VOAR) and on the voxel grid fineness.

The negative effect on the speed of Benson’s algorithm also have the growing number of objective

functions Nf(x) and the number of design variables Nx, i.e. irradiation from multiple directions. Of

the most important influence is, however, the segmentation of the Pareto surface: the higher the total

count of vertices the greater the count of linear programs which are needed to be solved. Unluckily,

the total number of vertices is not known in advance.

Vtot VTAR VOAR Nconstr. Nx Nf(x) Nvert tgen [s] topt,non [s] topt,par [s]3

43.560 216 252 686 218 2 2 2.613 0.655 16.632

43.560 216 588 1.239 435 3 21 3.965 6.074 16.856

66.424 392 448 2.019 787 3 57 8.143 51.993 47.237

25.872 180 330 873 363 3 455 2.775 118.950 90.645

43.560 216 588 1.239 435 3 525 3.874 165.352 128.420

43.560 216 588 1.239 435 3 649 3.894 209.533 144.563

76.800 512 512 2.563 1.027 3 201 11.337 285.529 222.354

88.200 648 576 3.176 1.299 3 182 16.102 457.189 334.597

Table 4.3: Time demands of the treatment plan optimization using Benson’s algorithm. Vtot denotes
the total count of voxels, VTAR the number of voxels in the tumor(s), VOAR the number of voxels on
OAR(s), respectively. Nconstr. represents the total count of constraints of the LP, Nx the number of
design variables, Nf(x) the number of objective functions and Nvert the total count of vertices forming
the full Pareto surface. tgen denotes the time needed to calculate the doses, topt,non represents the
time needed for the non-paralell version of Benson’s algorithm to obtain full Pareto-surface. The time
needed for the parallel version of Benson’s algorithm is denoted by topt,par.

Note that based on (Shao et al., 2008) it is possible to implement an approximate version of

Benson’s algorithm, such that the time and computational demands are significantly lowered.

2We have used MATLAB R2014b on a laptop Acer Aspire V15 with processor Intel Core i5-4210H 2.90 GHz and
RAM 8 GB DDR3L SDRAM. Ubuntu 14.04 64bit has been used as the OS.

3Opening of the paralell pool in MATLAB tooks 11.5 s. Two computational cores have been used.
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Chapter 5

Conclusion

In this thesis it has been described an implementation of a simplified model of the beam propagation

through matter. An analytical approximation of the Bragg curve has been implemented incorporating

the influence of inhomogeneities. The multiple scattering theory has been included by the implemen-

tation of Highland’s approximation. Based on the compared values sufficiently accurate results have

been achieved.

Subsequently, the key part of this thesis – optimization of the proton therapy treatment plan

– has been introduced. Firstly, we have adopted a linear program minimizing the total count of

irradiated protons (resp. the primary fluences). The common weakness of the approach has proved

to be non-feasibility of the program duo to conflicting constraints.

Hence, the linear program has been reformulated into a linear program with free one-sided goals,

ensuring thus the feasibility of the optimization and presenting certain freedom in the prescribed

constraints. The optimal solution is, however, usually degenerate and is therefore not appropriate for

practical use.

The optimization problem has been finally modified into multiple-objective linear programming

with free one-sided goals, enabling thus the decision maker to choose the most appropriate solution

within the whole (infinitesimal) Pareto surface. The whole and exact Pareto surface is obtained using

either parallel or non-parallel version of Benson’s algorithm.

Because the time demands of Benson’s algorithm cannot be guaranteed in advance a new approach

creating uniformly distributed points on the Pareto surface has been developed. The approach is based

on the modified algorithm distmesh and ensures the possibility to approximate the whole Pareto

surface. Also, the approach is ideally parallelizable, because the individual uniformly distributed

points are mutually independent.
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republiky, 2013. [cit. 2. 4. 2015]. Available at: www.uzis.cz/system/files/demozem2012.pdf.

Benson, H. P. An outer approximation algorithm for generating all efficient extreme points in the

outcome set of a multiple objective linear programming problem. Journal of Global Optimization.

1998, 13, 1, s. 1–24.

Berger, M. J. et al. Stopping powers and ranges for protons and alpha particles. ICRU Report.

1993, 49.

Bethe, H. Moliere’s theory of multiple scattering. Physical Review. 1953, 89, 6, s. 1256.

Bokrantz, R. Multicriteria optimization for managing tradeoffs in radiation therapy treatment

planning. 2013.

Bortfeld, T. An analytical approximation of the Bragg curve for therapeutic proton beams. Medical

physics. 1997, 24, 12, s. 2024–2033.

Chen, P.-C. – Hansen, P. – Jaumard, B. On-line and off-line vertex enumeration by adjacency lists.

Operations Research Letters. 1991, 10, 7, s. 403–409.

Coderre, J. Principles of Radiation Interactions [online]. 2004.

[cit. 8. 4. 2014]. Available at: http://ocw.mit.edu/courses/nuclear-engineering/

22-55j-principles-of-radiation-interactions-fall-2004/lecture-notes/energy_depos_

hcp.pdf.

Vera, P. – Abril, I. – Garcia-Molina, R. Water equivalent properties of materials commonly used

in proton dosimetry. Applied Radiation and Isotopes. 2014, 83, s. 122–127.
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Appendix A

Modified algorithm distmesh

The algorithm distmesh (Persson, Strang, 2004) has been written in the software MATLAB as a simple

tool aimed for mesh generation. The fundamental principle of the algorithm is based on dynamic

relaxation. The usage of the algorithm in the context of this thesis is focused, however on Design of

Experiments (DoEs). Compared to faster algorithms, such as clustering, the considered algorithm

excels specifically in the quality of the resulting design, see (Myšáková, 2013) for reference.

Initially, the algorithm accepts a set of design points P located in the design space N . The shape

of the design space is stated by the distance function d(x1, ..., xn) defined as

d(x1, ..., xn) ≤ 0 for x ∈ N

d(x1, ..., xn) > 0 for x /∈ N,
(A.1)

where n denotes the number of dimensions of the design space.

The initial points P are then triangulated by Delaunay’s triangulation, crating thus connections

between individual points. Similarly to truss structures the individual points then represents nodes

and the connections bars of the truss. Also, there is likewise defined a relation between applied forces

and displacements.

Let us denote the optimal length of bars by L0 and the actual length of bars by L. Based on their

difference we will define applied forces F :

F = L0 − L. (A.2)

The applied forces in all nodes are then decomposed into all directions (dimensions). Subsequently,

we can introduce displacements ∆P dependent on the selected time step ∆t. The location of the nodes

after the time step is computed as

P = P + ∆P = P + ∆tF. (A.3)

If any of the points move out of the prescribed design space N an external loading is applied,

such that the point moves back into the design space. The direction of the external loading is in the

direction of the gradient of distance function.
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In the case that all of the points move less than the prescribed tolerance, the final solution is

obtained. Otherwise, the points serve as the re-input for the Delaunay’s triangulation. The algorithm

can also terminate in the case of exceeding of the maximum count of iterations.

In the paper (Tyburec, 2014a) we have modified the algorithm in such a way, that the most

time demanding part, Delaunay’s triangulation, is replaced by the connection of s nearest neighbor

points, i.e. each point creates at least s connections. The neighbor connections have been found using

MATLAB’s internal function knnsearch.

An example of the solved two-dimensional problem is shown in Figure A.1.
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Figure A.1: Example of 2D problem solved by modified algorithm distmesh. The left figure shows
the initial 30 randomly generated points P . For each point 5 nearest neighbors have been considered.
The right figure shows the result after 100 iterations.The design space is prescribed to be a circle with
a radius equal to 1.

Based on the measured values it has been determined that the modification significantly speeded

the algorithm up and consequently enabled us to use the algorithm for larger number of dimensions

compared to the original version. The quality of the results have proved to be comparable.
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Appendix B

Numerical solution of definite

integrals

There exist situations, where it is not possible to formulate a result of a definite integral by symbolic

notation. It is then needed to compute the solution of such definite integrals numerically. The only

required inputs are functional values of the specified function in dedicated points. Then, based on the

specified accuracy, the points are connected by a polynomial function, for which the integral can be

formulated easily.

Generally, the specified interval is split into multiple subintervals, according to needed numerical

accuracy. In each subinterval n functional values are computed, where n denotes the polynomial

lemniscate. Commonly used polynomials are of leminiscate lower than 4 (Kress, 1998).

∫ b

a

f(x)dx ≈ b− a
n

[c1f(x0) + ...+ cnf(xn)]. (B.1)

n Name of rule Coefficients c

0 Midpoint 1

1 Trapezoid 1
2

1
2

2 Simpson’s 1
3

4
3

1
3

3 Newton’s 3/8
3
8

9
8

9
8

3
8

4 Milneo’s 14
45

64
45

24
45

64
45

14
45
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