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1 Introduction

Topology optimization of trusses is one of the most developed field in the structural optimization. The usual
aim of a designer is to design trusses that are optimal in some objective(s) required by the investor. Common
objectives can be, for example, the least weight or the most stiff truss.

Typical design variables of the topology optimization are cross-sectional areas of individual bars. There-
fore, mostly two approaches are being used: either continuous or discrete optimization. There obviously exist
advantages and disadvantages for both the mentioned formulations.

Discrete topology optimization prescribes a list of possible cross-sectional areas available for each bar. The
problem is thus usually solved by some sort of enumeration method (e.g. branch-and-bound algorithm), the
computational demands are thus enormous and even 10-bars truss can be a challenge to solve to proven global
optimality.

The second approach, continuous topology optimization, can be, if some assumptions are made, solved to
global optimality very rapidly, using convex optimization methods. The drawback is that the cross-sectional
areas of individual bars in general differ, such trusses could thus be hardly prefabricated which makes the use
case limited.

The aim of this paper is to combine the benefits of both the approaches into one, hence making the opti-
mization feasible in a limited time and concurrently allow to prescribe a limited set of continuously varied
cross-sectional areas using groups. To ensure the true optimality of the final truss the truss is divided into
a limited set of Wang tiles and a two-phase optimization approach is presented. The whole described theory is
implemented using software MATLAB.

This paper is structured as follows: Firstly, truss topology optimization (the lower-level of the two-phase
optimization) will be described and basic properties of the optimal design will be stated. In the subsequent
chapter we will introduce an idea of tiling of the initial structure and add groups into the original optimization
problem formulation. Also, three different types of initial tiles will be presented. Then, tile placement opti-
mization (the upper level of the two-phase optimization) will be adopted and solved using simulated annealing.
The last chapter presents few examples.
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2 Truss topology optimization

Finding optimal structures has always been a challenging task in the interest of many researchers. The so called
structural optimization problems usually try to achieve one of the following objectives: the least-weight struc-
ture, the stiffest structure or the structure as insensitive to instability and buckling as possible [Peter W. Chris-
tensen, 2009].

Structural optimization can be generally divided into three classes. In the sizing optimization the cross-
sectional areas of individual members are optimized. The second class, shape optimization, considers fixed
nodal connectivity and the location of nodes, structural shape, is optimized. The last class, topology optimiza-
tion, the subject of this chapter, is similar to the sizing optimization, it does, moreover, permits the individual
members reach a zero cross-sectional area and vanish.

Both the topology and shape optimization allow the designer to find optimal geometry, thus can be also
called geometry optimization. Simultaneous optimization of shape and topology is called layout optimization.
For specific examples see Figure 2.1.

(a) Initial truss. (b) Result of topology optimization.

(c) Result of shape optimization.

Figure 2.1: Comparison of topology and shape optimization of a 10-bars benchmark truss. In figure (a) the
initial truss is shown. The truss in the figure (b) represents a possible result of topology optimization.
The last figure (c) presents a result of shape optimization.

2.1 Michell’s optimality criteria

We will now focus on topology optimization of truss structures. The fundamental properties of the optimal grid-
like structures in a structural domain D were given by [Michell, 1904], who derived conditions of optimality
for the least volume trusses subjected to stress constraints and a single loading condition. The cross-sectional
areas of individual bars are allowed vary continuously.

Let σT,i and σC,i denote the bounds on the permissible stresses in tension and compression of the ith member,
respectively. The longitudinal stress of the ith member σi is then constrained by

−σC,i ≤ σi ≤ σT,i. (2.1)

Theorem 1. The least volume truss subjected to stress constraints and a single load condition is fully-stressed.

Proof. Let us consider there exist a member j of the truss strictly fulfilling the constraint

−σC,j < σj < σT,j . (2.2)
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2 Truss topology optimization

The axial force of the jth member can then be, considering linear elasticity and homogeneous material,
computed as

sj =

∫
A
σjdA =

∫
A
EjεjdA = Ejεj

∫
A
dA = Ejεjaj = σjaj , (2.3)

where Ej denotes the Young’s modulus of the jth bar, εj stands for the strain of the jth member and aj is the
cross-sectional area of the jth member, respectively. Consequently, the cross-sectional area of the jth member
can be stated as

aj =
sj
σj
. (2.4)

Based on the limits of the permissible longitudinal stresses it is easy to specify a lower bound on the cross-
sectional area of the jth member:

amin,j =


−sj
σC,j

for sj ≤ 0

sj
σT,j

for sj ≥ 0
. (2.5)

In the case of compressional axial force and after the application of the Equation 2.2 we obtain the inequality

sj
σj

>
−sj
σC,j

⇔ aj > amin,j . (2.6)

The same procedure can be similarly applied for the case of tensional axial force

sj
σj

>
sj
σT,j

⇔ aj > amin,j . (2.7)

Because the length of the jth bar has not changed, the not-fully-stressed truss simply can not be the least
weight, as the cross-sectional area of the jth bar can be further reduced to the corresponding amin,j value,
making thus the truss lighter.

Figure 2.2: Example of Michell truss.

Let us denote the column vectors of compressional and tensional axial forces of all bars by sC and sT,
respectively. The column vectors are prescribed to contain only non-negative numbers, hence the axial forces
of all members s can be stated as

s = −sC + sT. (2.8)

It should be noted that if the members of the truss are manufactured from the same material the least weight
optimization is equivalent to the least volume optimization. Based on the Equation 2.5 we can thus write the
volume of the optimal fully-stressed truss as

V = lT(sC � σC + sT � σT), (2.9)
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2 Truss topology optimization

where the symbol � represents element-wise division, l is a column vector of lengths of all members and
column vectors σC and σT denote the bounds on the maximal allowed stresses in compression and tension of
all members, respectively.

The optimal least weight truss also needs to satisfy the equilibrium conditions against the specified static
load and there must exist deformations compatible with the strains [Ohsaki, 2011]. Also, the so called Michell
truss consists of bars arranged in the directions of the principal strains. Because the trajectory of the principal
strains is generally not straight (for example see Figure 2.2) the total count of bars can be infinitesimal.

2.2 Ground structure approach

To overcome the problem of infinitesimal count of bars [Dorn et al., 1964] proposed an approximate solution
using the so called ground structure approach. The basic idea of the ground structure approach is a discretiza-
tion of the structural domain D into a finite set of fixed nodes and a set of potential connections between them
[Bendsoe and Sigmund, 2004]. Throughout the optimization the continuous cross-sectional bar areas are con-
sidered as continuous design variables and they are allowed to take zero values, enabling thus the change of
topology by vanishing members.

Figure 2.3: Example of highly connected ground structure.

2.2.1 Plastic formulation

In the case when a ground structure is subjected to a single load case, only elastic and linear conditions are
considered and the stress bounds are prescribed, the optimization problem can be formulated as a linear program

minV =min lT(sC � σC + sT � σT) (2.10a)

s.t.:
(
−A,A

){sC
sT

}
= f (2.10b)

sC, sT ≥ 0, (2.10c)

where f denotes a column vector of nodal forces and A denotes nodal equilibrium matrix. For each ith member
only one of the sC,i or sT,i can be equal to a nonzero value, as there can not exist a situation in which a bar
simultaneously carries both the tensional and compressional force.

The objective of the plastic formulation is a minimization of the structural weight (see Equation 2.10a and
Equation 2.9) such that the resulting optimal structure is capable of carrying the prescribed nodal forces f
through bars into fixed supports. The just described condition is actually expressed by the static Equation 2.10b
stating the equilibrium between the nodal forces f and the axial forces s.

All the Equations 2.10 are linearly dependent on the design variables s, hence providing a linear formulation,
which can be efficiently solved to global optimality by several available solvers. The basic properties of the
optimal trusses are established by the previously described Michell’s optimality criteria. Firstly, any optimal
truss has to be fully stressed, which we have already proven in the Theorem 1.

The structure needs to be able to carry the nodal forces into supports, therefore the equation 2.10b has to be
solvable. Let us now look closer on the nodal equilibrium matrix A. The rows of the matrix represent degrees
of freedom of the ground structure and the columns correspond to all permissible connections between them.
The Equation 2.10 does have a solution if one of the following condition is satisfied:
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2 Truss topology optimization

• The final matrix A is regular, i.e. the rank of the matrix A is equal to the number of columns of the
matrix A. This condition can be equivalently rewritten to the formulation: Matrix A is regular if the
count of degrees of freedom of the optimal structure is equal to the number bars with non-zero cross-
sectional area. Consequently, the solution of the equation As = f can be uniquely determined and the
final structure is statically determinate.

• The final matrix A is singular, so the rank of matrix A is lower than the number of columns of the same
matrix; or similarly, the final truss is statically indeterminate and the equation As = f has an infinite
count of solutions.

Based on the above theory it can be assumed that the least volume (weight) truss will be statically determi-
nate, as the structure contains lesser bars. We have not proven it, but this statement is generally true for a single
load case.

Another important property of the plastic formulation is that the result of the least weight optimization is in
the case of a single load case a dual problem of the minimum compliance formulation [Bendsoe and Sigmund,
2004], hence both the formulations are equivalent.

It should be noted, however, that the problem formulation in Equation 2.10 does not include any compat-
ibility or stress-strain relation. For a single load case this condition is not needed, as the optimal solution is
statically determinate and thus the stress-strain relation is automatically satisfied. Another reason is that such
formulation is not a linear program and thus not so easily solvable to global optimality. In the case of multiple
loading conditions and/or prescribed groups of cross-sectional areas the solution is not, in general, statically
determinate. The optimal plastic design is then not equivalent to the optimal elastic design, but it can be used
as a lower bound of the elastic formulation.

2.2.2 Post-processing

The resulting least-weight truss usually consists of several artifacts. These can be removed by further post-
processing, such that reduced-optimal-structure (ROS) is obtained [Zegard and Paulino, 2014, Dorn et al.,
1964]:

• Nodes in which only two collinear bars are present are removed and the bars merged to a single long one.

• Nodes in which no bar is present are removed.

• Bars associated with the basic variables of the linear program should have a minimal cross-sectional area
amin > 0 to account for imperfections.
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3 Tiling of the initial truss

The result of topology optimization presented in the previous chapter is, generally, a globally optimal least
weight and minimal compliance truss. It is common that, in case of no symmetry, each bar of the optimal truss
has a unique cross-sectional area. Also, the number of bars of the optimal truss is not known in advance. The
optimal structure thus can be inappropriate for practical usage – the truss consisting of so many non-repetitive
elements that it would be just too time-consuming and uneconomical to build, see for example Figure 2.2.

To overcome the problem of a huge amount of different cross-sectional areas it is possible to divide the initial
ground structure into a tile-based grid (see Figure 3.1) composed of a limited set of tiles, so that each tile can
be placed multiple times or be unused, making thus the prefabrication of such truss possible.

Figure 3.1: Tiled 2-dimensional beam.

Placed tiles need to be compatible in a meaning that connected bars and nodes have to be able to carry
prescribed static loading into supports. Such structure is then called statically admissible.

To achieve statical admissibility one can either use an appropriate predefined tile set containing a number of
bars not participating on the transfer of static loads, or perform topology optimization using groups that define
bars with equal cross-sectional area. This paper deals with the latter approach.

3.1 Grouping of cross-sectional areas

Let us denote the total count of bars of the ground structure by nB and a group vector assigning group number
for each individual bar by g, the length of the group vector is thus nB. Bars which are assigned the same group
number share equal cross-sectional area. Therefore, the total count of cross-sectional areas nG is the number
of unique elements in g.

The binary group matrix G of size nG × nB is then defined as

G(i, j) =

{
0 for j 6= g(i)

1 for j = g(i)
, (3.1)

where i = {1, 2, . . . , nB}. The initial optimization problem (see Equation 2.10) can thus be rewritten to:

minV =min lTa (3.2a)

s.t.:
(
−A,A

){sC
sT

}
= f (3.2b)

Ga ≥ sC � σC + sT � σT (3.2c)

a, sC, sT ≥ 0. (3.2d)

Note that because of the prescribed groups of cross-sectional areas the resulting optimal structure is not in
general statically determinate, hence the optimal plastic design is not generally equivalent to the optimal elastic
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3 Tiling of the initial truss

design and there may not exist compatible displacements fulfilling the prescribed stress limits. This is caused
by the fact that the normal stresses can be computed not only based on the equilibrium (static) equation

σ = s� a (3.3)

that is used in the plastic formulation, but also from merged physical and geometric equations

σ = E� εlx = E� drlx
dxl

= E�∆l� l, (3.4)

where εlx represents local normal strain and rlx displacements along the local axis xl, respectively. The symbol
� represents Hadamard product, i.e. element-wise multiplication.

The resulting optimal structure is commonly statically indeterminate, the count of bars with non-zero cross-
sectional area is therefore greater than the rank of the final nodal equilibrium matrix A, which is thus singular;
and there does not exist unique solution to the Equation 3.2b. Consequently, the stress vector computed by the
Equation 3.3 is also not unique. In reality, the unique internal forces s and stresses σ can be computed based on
the stiffnesses of individual members from the Equation 3.4, which is, however, not considered by the plastic
formulation, making the optimization problem not so tightly constrained. Subsequently, the result of the
plastic formulation creates a lower bound on the admissible elastically optimal solution.

3.2 Tile design

In the previous sections we have introduced an idea to divide an initial structure into tiles (see Figure 3.1)
and it has been theoretically explained how to assign an equal cross-sectional area to multiple bars. These two
assumptions will be used in this section to define three truss tiles used throughout this paper to assemble ground
structures.

(a) Tile of type A. (b) Tile of type B. (c) Tile of type C.

Figure 3.2: Initial definition of three truss tiles. The blue circles represent nodes of the initial ground structure
and the black lines represent bars.

The most important aspects of the initial tile design seem to be, until the time of writing of this paper,
the connectivity of the tiles and the influence of the tile design on the degree of statical indeterminacy of the
resulting optimal structure.

Following the former aspect the design of the tile of type A (see Figure 3.2a) has been introduced. The tile
consists of 9 uniformly spaced nodes. Considering the height and the width of the tile equal to 1 and coordinates
of the centroid of the tile as (0, 0) the nodes are positioned in any combination of the elements {−1

3 , 0,
1
3}. The

bars are generated in a way that the maximal allowed length of a bar is equal to 1
9 .

A tile of type B (see Figure 3.2b) is very similar to the tile of type A. It contains additional nodes in the
place of visual intersections of bars from the former tile type, hence some prescribed nodes are located on the
edges and in the corners. The length limit of a bar is again equal to 1

9 . The tile of type B served actually as an
intermediate implementation between the types A and C.

The latter tile type C, shown in Figure 3.2c, is based on the design of the former tiles. While the location of
individual nodes is the same as in the tile of type B, the placement of bars, although in most cases split, is based
on the type A. The benefit of the tiles of type C is that the resulting optimal structure has lower degree of statical
indeterminacy and because the tiles do not contain any only visual intersections they are easily producible.
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3 Tiling of the initial truss

3.2.1 Completely random tile placement

It has been already written that the connectivity of the tiles is needed to be ensured to produce a statically
admissible ground structure. An initial approach can then be proposed:

• Creation of the initial tile set containing nW tiles of the same tile type.

• Random placement of tiles from the tile set into domain of a structure D, such that no blank space is left.
Assembly of ground structure.

• Division of bars from which the ground structure consists of into groups based on assumptions: if any
of the tiles from the tile set is placed multiple times, all such tiles share the same group vector g. The
individual bars exceeding the tile dimensions (also called overlapping bars; see Figure 3.2a) need to share
the same cross-sectional area in the both tiles where they appear.

As there exist an optimal solution of the Equation 3.2 it has been proven that this procedure produces stati-
cally admissible tiled ground structure. The benefit of this approach is the relative ease of implementation. On
the contrary, the simultaneous existence of overlapping bars and completely random tile placement generally
lead to results where the most of the final truss weight is placed in the overlapping bars. Consequently, Wang
tiles have been implemented to constrain the placement of tiles.

3.2.2 Wang tiles

The idea of domino-like Wang tiles has been firstly proposed in [Wang, 1961] by Hao Wang, hence the name
Wang tiles. Wang tiles are a set of squares, each thus containing four edges. Each edge is assigned an integer
value that can be visualized as a specific color. To create a valid tiling the edges shared between tiles need to
have the same color. This work uses only binary values: 0 is rendered as white and 1 as blue, see Figure 3.3 as
a reference example.

C =


0 0 0 1 0

0 1 1 1 0 1
0 1 0 0 0

0 1 0 1 1 0
1 0 1 0 0

 ⇐⇒

Figure 3.3: Example Wang tiling with the connectivity information stored in edges.

Wang tiles are usually applied in computer graphics [Cohen et al., 2003] because of their ability to tile a plane
with aperiodic pattern even with a small tile set, which significantly accelerates rendering of large aperiodic
textures [Berger, 1966]. This attribute applies only to special tile sets which are, however, not used in this
paper. The usage of Wang tiles is advantageous as it offers us the possibility to define several types of edges
and corners.

Similarly to the tiles proposed in [Wang, 1961], where the connectivity information of individual tiles is
stored in their edges, it can be saved in the corners [Lagae and Dutré, 2006], introducing corner tiles. The corner
tiles share all the attributes of the classical Wang tiles such as the size of full tile set, but their connectivity is
more easily stored, as the connectivity matrix C is rectangular, for comparison see Figure 3.3 and Figure 3.4.

C =

1 1 0 0 0 0
0 0 1 0 1 0
1 1 1 1 0 0

 ⇐⇒

Figure 3.4: Example Wang tiling with the connectivity information stored in corners.

The full tile set of the classical and also corner Wang tiles consists of 42 = 16 tiles. Tile set of corner tiles
adopted in this paper is shown in Figure 3.5.
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3 Tiling of the initial truss

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16
Figure 3.5: Full tile set of corner Wang tiles.

3.2.3 Assigning groups to the bars in tiles

In this section the corner tile set is considered to be composed solely by the tiles of type A (see Figure 3.2a).
The same procedure can also be applied for the tiles of type B and C, though. The tiles of type A have been
chosen due to the fact they contain all the groups described in this section.

Corner groups

Following the Figure 3.5 we have defined two types of corners of the tiles. The first type is rendered in a white
color and the corresponding integer value is 0, the second type is labeled by 1 and drawn in a blue color. Let
us now consider there exist bars coming exactly through corners of the tiles, as shown in Figure 3.6, and there
does not exist any node placed exactly in the corner. The bars fulfilling this definition will be referred in the
following text as corner-associated bars.

(a) (b)

Figure 3.6: Corner groups of the tile set containing tiles of type A.

Based on the definition of Wang tiles and the requirement of fully-connected ground structure it is clear that
the corner-associated bars are bound to the specific corner type. The count of corner groups is thus equal to
the sum of unique corner-associated bars coming through each corner. The tile set of type A thus includes 4
groups, as clearly shown in Figure 3.6.

Edge groups

Because there exist two types of corners represented by 0 and 1, respectively, it is possible to create 4 types of
vertical and 4 types of horizontal edges, as a 2-combination of 0 and 1 values. All the possible combinations
are shown in the Figure 3.7.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.7: Edge groups of the tile set containing tiles of type A.
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3 Tiling of the initial truss

Similarly to the definition of corner-associated bars the edge-associated bars are bars coming exactly through
one edge (i.e. they can not come through corner) and concurrently any of nodes associated with the bars are
located exactly on the edge of a tile.

Consequently, the count of the edge groups is equal to the sum of the unique edge-associated bars coming
through each type of edge, hence in the considered example the count of edge groups is equal to 7 ∗ 8 = 56,
see Figure 3.7.

Tile groups

We have already defined corner-associated and edge-associated bars. The remaining bars, from which the tile
consists of, will be named as tile-associated bars, because they are bound only to the specific tile.

The full tile set includes 16 tiles, see Figure 3.5, hence the count of tile groups is equal to sum of the unique
tile-associated bars in each tile. Because the tile of type A consists of 20 tile-associated bars the count of tile
groups in the considered example equals to 16 ∗ 20 = 320, see Figure 3.8 for reference.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p)

Figure 3.8: Tile groups of the tile set containing tiles of type A.

The total count of groups for the treated tile set thus equals to 4 + 56 + 320 = 380.
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4 Two-phase optimization

The optimization of a tiled truss can be divided into two levels: the lower level, where global topology opti-
mization is launched on a given ground structure, see Equation 3.2); and the upper, where the tile placement
is optimized. The tile placement optimization, the main subject of this chapter, is really important, as the dif-
ference of volume of the optimal truss between the best (usually not known in advance) and the worst tiling is
significant (for examples see Chapter 5).

4.1 Simulated annealing

Optimization tasks are in general divided into two categories [Cook, 1971] – problems that are solvable de-
terministically in a polynomial time (class P problems); the rest of problems, which are not deterministically
solvable in polynomial time, are of class NP. An example of the class P problem is linear programming. NP
class problems may be represented for example by commonly referenced traveling salesman problem (TSP).

Traveling salesman problem:
It is given a list of cities and the distances between them. The aim of the salesman is to visit all the cities
in the list and then return to the origin city in such order that the total distance traveled is minimal.

In reality both the above mentioned categories of optimization are common and both are needed to be solved
efficiently. In this chapter the non-convex NP-hard tiling problem is considered. One can choose two ways
to obtain a solution: either deterministic optimization algorithms with a price of huge computational demands
and times or fast heuristic algorithms with a price of approximate or local solution. One of the most commonly
used local-search heuristic algorithms is simulated annealing.

4.1.1 Analogy with annealing of solids

Simulated annealing has been firstly introduced in [Kirkpatrick, 1984, Černý, 1985] as a mimic of the physical
process of annealing of solids, hence the name simulated annealing.

Annealing is a thermal process that is used to bring a solid into a low-energy state, while improving properties
of the solid. The first step is to increase the temperature of the solid such that it melts. The particles, from which
the solid consists of, are then arranged randomly. Afterwards, the solid is very slowly cooled, permitting thus
the particles to regularize into a minimal-energy grid.

According to this analogy it is possible to state the equivalence between the terminology commonly used
in optimization methods and the terminology used in simulated annealing [Salamon et al., 2002]. The state of
the solid is described by ω, which is analogous to a feasible solution x in optimization methods. The aim of
the method is to reach a solution with the lowest energy E = ENERGY(ω), similarly to the objective function
f(x). The optimal solution is then called a ground state ω∗, which is equivalent to x∗. The overview of the
used terminology is presented in Table 4.1.

Simulated annealing Optimization problem
Stateω Feasible solution x

Energy E(ω) Objective function f(x)
Ground stateω∗ Optimal solution x∗

Temperature T Control parameter

Table 4.1: Equivalent terminology of simulated annealing and optimization problem.
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4 Two-phase optimization

4.1.2 Basic simulated annealing algorithm

The inputs to the simulated annealing algorithm are the initial feasible stateω0, initial temperature T0, number
of temperatures nT and number of steps nS. These parameters are set for the particular optimization problem.

Firstly, the algorithm computes the energy E of the initial state ω0 and enters the iteration cycle. The
iteration cycle mimics slow cooling of the system with nT successive temperatures. The system is then brought
for each temperature T into equilibrium by using nS iterations.

Every iteration a new neighbor state ωT and its energy ET are computed. Neighbor state in this context
means that both the statesω andωT have ”something” in common, hence the definition of the NEIGHBOR(ω)
function is mostly dependent on the optimization problem. The definition of neighbor function used in this work
is mentioned in the next section.

Because the aim of simulated annealing is to minimize the energy, it is checked whether the neighbor-state
energy ET is lower than the energy E. If the answer is positive the state will be accepted, otherwise, the
solution might be accepted within some probability, which is dependent on the temperature T . Initially, when
the temperature is high, almost all the states with higher energies are accepted. As the temperature decreases
the probability to accept states with higher energies also decreases. Therefore, the algorithm, unlike gradient
methods, avoids being trapped in a local optimum even for non-convex problems and with correct settings
converges to the global optima.

After all the nS iterations have been performed the temperature is decreased accordingly to the cooling
schedule predefined by function COOLING(T ). The algorithm terminates when the temperature T has been
(nT − 1) times cooled. Based on the algorithm settings and the number of iterations either local or global
optimum is obtained. The Algorithm 1 shows the pseudo-code of simulated annealing.

Algorithm 1 Simulated annealing

1: function SIMULATEDANNEALING(ω0, T0, nT, nS)
2: ω←ω0 . Get initial state
3: T ← T0 . Get initial temperature
4: E ← ENERGY(ω) . Compute initial energy
5: for i← 1, nT do . For the count of decreasing temperatures
6: for j ← 1, nS do . For the steps while the same temperature
7: ωT ← NEIGHBOR(ω) . Compute trial neighbor state
8: ET ← ENERGY(ω) . Compute energy of the trial neighbor state
9: ∆E ← ET − E . Compute energy improvement

10: if ∆E ≤ 0 then . If the system energy is lower
11: ω←ωT . The state is always accepted
12: E ← ET . And energy is updated
13: else . Otherwise
14: if RAND(1) < EXP(−∆E/T ) then . The state is accepted based on probability
15: ω←ωT

16: E ← ET

17: end if
18: end if
19: end for
20: T ← COOLING(T ) . Cool the temperature
21: end for
22: returnω
23: end function

4.1.3 Settings used for the two-phase optimization

Tiling of a structure composed by a full set of Wang corner tiles is described by a binary connectivity matrix
C, see Figure 3.4 for an example. The connectivity matrix thus describes the state of simulated annealing
algorithm. The initial connectivity matrix characterizing the ground state is created as a random binary matrix
of specified dimensions.
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4 Two-phase optimization

Based on the connectivity matrix the ground structure is assembled and topology optimization is launched us-
ing the formulation of the problem defined by Equation 3.2. The topology optimization then yields
optimal cross-sectional areas and the value of the objective function – optimal truss volume. The individ-
ual optimal cross-sectional areas are not anyhow used by the simulated annealing algorithm, the value of the
objective function does, however, represent the current energy of the system. The function ENERGY(ω) is thus
equivalent to a solution of the topology optimization with a given ground structure uniquely defined by the
connectivity matrix.

Neighbor state selection

Any state of the system can be described definitely by the connectivity matrix C. The neighbor state is achieved
in a way that a random element ind of the connectivity matrix is changed to the opposite binary value:

Cind = 1−Cind (4.1)

See Algorithm 2 for the specific NEIGHBOR(ω) function pseudo-code.

Algorithm 2 Neighbor state generation in simulated annealing

function NEIGHBOR(ω)
ωT ←ω

ind← RANDOM ELEMENT INDICES(ω)
ωT(ind)← 1−ωT(ind)
returnωT

end function

Control parameters

The problem of the correct settings of control parameters have been widely addressed for example in [Salamon
et al., 2002, Burke and Kendall, 2013, Kirkpatrick, 1984]. The control parameters are however very tightly
connected to the specific optimization problem, it is thus not possible to propose a generally valid parameters.

Therefore, the settings of control parameters used in this paper have been developed heuristically based on
the previous optimization runs. The parameter defining the number of temperatures nT is computed as

nT = ROUND(SIZE(C, 1) ∗ SIZE(C, 2) ∗ 1.5), (4.2)

where the SIZE(C, j) function returns the size of jth dimension of the C matrix and the ROUND function rounds
the input to the nearest integer. Parameter prescring the number of steps nS is computed as

nS = ROUND(SIZE(C, 1) ∗ SIZE(C, 2)/3). (4.3)

Cooling schedule and initial temperature

The last and most important parameter is the initial temperature T0, which can be computed by the equation

T0 =
Eworst − Eideal

50
, (4.4)

where Eworst represents an energy of the worst-case tiling – i.e. when all the elements of connectivity matrix C
are equal to 0 and thus the structure is tiled from only one tile type. The ideal energy Eideal is obtained by opti-
mizing the ground structure without prescribed groups. The temperature is in every iteration multiplied by 0.95
and the system is thus cooled. Pseudo-code of a COOLING function is shown in Algorithm 3.

Algorithm 3 Cooling schedule of simulated annealing

function COOLING(T )
T ← 0.95T
return T

end function
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5 Reference examples

This chapter presents three initial examples of the two-phase optimization. All the previously defined tile types
have been evaluated on a selected structure, beam tiled in a 11 × 3 grid. Each tile type is represented by an
ideal solution, which has been obtained by launching the topology optimization without specified groups of
cross-sectional areas, see Equation 2.10; then by the two optimal results of the two-phase optimization and the
worst-case tiling.

The first optimal solution has been obtained by applying a condition that the connectivity matrix C has to be
symmetric, i.e. symmetric tiling of the structure is enforced. The second optimal solution is an ordinary optimal
solution obtained by the previously described two-phase optimization approach. The optimization result with
enforced symmetry is hoped to be of better quality.

It should be noted that all of the optimal topologies, except for the worst-case examples, have been post-
processed.

5.1 Beam tiled with 11x3 tiles of type A

Figure 5.1: Ideal non-grouped beam tiled with 11x3 tiles of type A. The ideal volume is Videal = 0.79433.

5
9
1

6
15
9

10
4
7

11
1
6

11
5

14

11
6

16

11
2
8

11
1
6

7
13
10

6
12
3

2
3
1

Figure 5.2: Beam tiled with 11x3 tiles of type A after two-phase optimization with prescribed symmetry. The
resulting volume is V = 1.2481.
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Figure 5.3: Beam tiled with 11x3 tiles of type A after two-phase optimization without prescribed symmetry.
The resulting volume is V = 1.1863.
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Figure 5.4: The worst case solution of the beam tiled with 11x3 tiles of type A. The volume is Vworst = 3.0837.

5.2 Beam tiled with 11x3 tiles of type B

Figure 5.5: Ideal non-grouped beam tiled with 11x3 tiles of type B. The ideal volume is Videal = 0.80851.
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Figure 5.6: Beam tiled with 11x3 tiles of type B after two-phase optimization with prescribed symmetry. The
resulting volume is V = 0.96671.
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Figure 5.7: Beam tiled with 11x3 tiles of type B after two-phase optimization without prescribed symmetry.
The resulting volume is V = 1.0826.
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Figure 5.8: The worst case solution of the beam tiled with 11x3 tiles of type B. The volume is Vworst = 3.4809.
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5 Reference examples

5.3 Beam tiled with 11x3 tiles of type C

Figure 5.9: Ideal non-grouped beam tiled with 11x3 tiles of type C. The ideal volume is Videal = 0.80851.
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Figure 5.10: Beam tiled with 11x3 tiles of type C after two-phase optimization with prescribed symmetry. The
resulting volume is V = 1.0299.
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Figure 5.11: Beam tiled with 11x3 tiles of type C after two-phase optimization without prescribed symmetry.
The resulting volume is V = 1.1687.

19



5 Reference examples

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

Figure 5.12: The worst case solution of the beam tiled with 11x3 tiles of type C. The volume is Vworst = 3.5419.
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6 Conclusion

Within this work a two-phase optimization of Wang-tile-based trusses has been successfully implemented in
the software MATLAB. The results, as shown in the Chapter 5, proved it is possible to lower the weight of
a tiled structure, such that it does not significantly vary from the ideal result of optimization of the non-tiled
ground structure. The optimal tiled truss can then be more easily prefabricated.

There, however, still remain a lot of work to be done and many issues to be solved. Firstly, although the plastic
formulation used as the lower level of the two-phase optimization produces globally-optimal solutions, it is not
appropriate for this type of problem, because the resulting topologies are not generally statically determinate
and thus not fulfilling the compatibility (stress-strain) relation. The possible future path might be semidefinite
programming, which will incidentally solve the problem of the final truss stability. Also, the objective function
will be probably predefined to the minimization of compliance1.

The upper level of optimization does work as initially observed. However, it can be assumed that the settings
of simulated annealing can be further tweaked to speed up the optimization and possibly obtain preferable
results. To further improve the performance the possibility of implementation of another heuristic algorithm,
such as tabu search or genetic algorithm, will be considered.
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A. Lagae and P. Dutré. An alternative for wang tiles: colored edges versus colored corners. ACM Transactions
on Graphics (TOG), 25(4):1442–1459, 2006.

A. Michell. LVIII. the limits of economy of material in frame-structures. Philosophical Magazine Series 6, 8
(47):589–597, 1904. doi: 10.1080/14786440409463229.

M. Ohsaki. Optimization of finite dimensional structures. CRC Press/Taylor & Francis, Boca Raton, 2011.
ISBN 9781439820049.

A. K. Peter W. Christensen, Anders Klarbring. Peter W. Christensen. An introduction to structural optimization.
Springer, Dordrecht, online-ausg. edition, 2009. ISBN 9781402086663.

P. Salamon, P. Sibani, and R. Frost. Facts, Conjectures, and Improvements for Simulated Annealing. Mono-
graphs on Mathematical Modeling and Computation. Society for Industrial and Applied Mathematics, 2002.
ISBN 9780898715088.

H. Wang. Proving theorems by pattern recognition – II. Bell System Technical Journal, 40, 1961. doi:
10.1002/j.1538-7305.1961.tb03975.x.

T. Zegard and G. H. Paulino. Grand—ground structure based topology optimization for arbitrary 2d domains
using matlab. Structural and Multidisciplinary Optimization, 50(5):861–882, 2014.

22


