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Abstract: Truss topology weight optimization problem with discrete cross-sections can be formulated as 
a mixed-integer linear program (MILP), which is solvable to global optimality. It is however very difficult to 
obtain proven globally optimal solution, as there usually exist a very large number of possible combinations. 
This contribution implements several types of additional cuts and solves the problem using a commercial 
branch-and-bound software Gurobi, hence making it possible to obtain a guaranteed globally optimal 
solution. Such solution can then be used as a lower bound for sizing optimization.  
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1. Introduction 

Truss topology optimization with discrete variables is a NP-hard problem (Yates et al., 1982). In the case 
of 52-bar truss (see Fig. 1), which is being used in this contribution, simple enumeration of all possible 
solutions yields 5,69×1021 combinations making it computationally non-manageable. 

2. Problem formulation 

According to (Rasmussen et al., 2008) the minimum-weight topology optimization problem is formulated 
as a mixed-integer linear program: 
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The truss consists of J bars. Each bar j of the truss may have a cross-sectional area selected from the 
predefined list {a1, a2, … aI}, where I represents the number of available areas. To describe which area is 
used by the bar j, an additional binary variable xij is introduced: if the ith area of the bar j is present, then 
xij is equal to one; zero otherwise. Each bar has at most one area present (6). If the bar does not have any 
area, it is removed, thus enabling to influence topology. The bars are divided into several groups with the 
same area, for implementation details the reader is referred to (Pospíšilová, Lepš, 2013).  
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Material properties 
E = 207 GPa 
ρ = 7860 kg/m3  
σmax = -σmin = 180 MPa 

 

Group Bars 
A1 1, 2, 3, 4 
A2 5, 6, 7, 8 ,9, 10 
A3 11, 12, 13 
A4 14, 15, 16, 17 
A5 18, 19, 20, 21, 22, 23 
A6 24, 25, 26 
A7 27, 28, 29, 30 
A8 31, 32, 33, 34, 35, 36 
A9 37, 38, 39 
A10 40, 41, 42, 43 
A11 44, 45, 46, 47, 48, 49 
A12 50, 51, 52 

 

External forces 
Fx = 100 kN; Fy = 200 kN 

 

Possible bar cross-sections [mm2] 
71,613; 90,968; 126,451; 161,29; 198,064; 252,258; 
285,161; 363,225; 388,386; 494,193; 506,451; 
641,289; 645,16; 792,256; 816,773; 940; 1008,385; 
1045,159; 1161,288; 1283,868; 1374,191; 1535,481; 
1690,319; 1696,771; 1858,061; 1890,319; 1993,544; 
2019,351; 2180,641; 2238,705; 2290,318; 2341,191; 
2477,414; 2496,769; 2503,221; 2696.769; 2722,575; 
2896,768; 2961,284; 3096,768; 3206,445; 3303,219; 
3703,218; 4658,055; 5141,925; 5503,215; 5999,998; 
6999,986; 7419,34; 8709,66; 8967,724; 9161,272; 
9999,98; 10322,56; 10903,204; 12129,008; 12838,684; 
14193,52; 14774,164; 15806,42; 17096,74; 18064,48; 
19354,8; 21612,86 

 

Fig. 1: Initial 52-bar truss. 

The truss is also characterized by prescribed material properties – material density ρ, Young’s 
modulus E and by minimal and maximal allowed stresses σmin and σmax. Based on linear elasticity it is 
possible to limit internal normal forces of individual bars sij, see Equation (3). 

It is usually needed to limit displacements u of the truss by a minimal umin and a maximal 
displacements umax (5), respectively. To preserve linearity of the formulation, the internal forces s are 
bounded by cmin and cmax (Rasmussen et al., 2008): 
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where bj represents the jth row of the static matrix B. These bounds should be valid only when the area i 
is present (4). To preserve compatibility for trusses without specified displacement limits, the values of 
cmin and cmax are replaced by extreme normal forces from Equation (3). The force equilibrium in nodes is 
described by the static matrix B and Equation (2), where f represents the external nodal forces vector. 

2.2 Branch-and-bound algorithm 

Because the formulation of the problem (1)-(6) is linearly dependent on design variables x, s and u, 
respectively, the problem may be solved by branch-and-bound algorithm. The algorithm starts with 
a relaxed problem formulation, without considering binary (integer) variables, thus making it possible to 
solve an ordinary linear program (LP). If all the binary variables obtained by the solution of the relaxed 
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problem have only binary values, global optimum is obtained. In the opposite case the initial  
relaxed problem is branched into multiple sub-problems (leave nodes) fixing specific binary variable on 
values 0 and 1. All the relaxed sub-problems are ordered by their objective value and solved from the 
smallest one, creating a lower bound of the problem. 

Branch-and-bound algorithm uses heuristics for finding a feasible integer solution fulfilling all the 
prescribed constraints, hence solving the full problem (1)-(6) and creating the upper bound. Therefore, if 
any relaxed sub-problem takes higher objective value than the upper bound, it is discarded. The algorithm 
terminates only if the upper bound is equal to the lower bound and no spare leave nodes are left. 

The benefits of branch-and-bound algorithm are obvious: limiting the number of combinations needed 
to solve the problem to global optimality and thus significantly speeding the computations up. 

3. Tightening of the problem 

To tighten the general formulation of the problem (1)-(6) even further, additional cuts are introduced. 
Their purpose is to limit the design space of the problem while preserving all feasible binary solutions and 
consequently keeping the same global optimum. The cuts have significant effect on both the number of 
branched nodes and the speed of the branch-and-bound algorithm itself. 

 
Fig. 2: Loaded node 18. 

3.1 Loaded-nodes cuts 

Each externally loaded node has to fulfill the force equilibrium (2). The vertical force Fy located at the 
node k has to be carried only by non-horizontal bars connected to the node k. It is evident that to carry the 
force Fy in Figure 2 at least one of the bars 41, 45 or 46 has to be present (Rasmussen et al., 2008) and the 
total area of these bars orthogonally displayed to vertical axis has to be greater than the minimal area 
needed to carry the external vertical force. The same procedure is also applied to the horizontal direction. 

 
Fig. 3: Method of section – cut through bars 27-36. 

3.2 Method-of-sections cuts 

Similar idea is used for the method-of-sections cuts (Lepš et al., 2014). All the cuts are generated as 
follows: Firstly, the truss is divided into two sections. It is then checked if there exist a situation that all 
the supports in one direction (e.g. x) are on one section and there exist at least one external force, in the 
same direction as the supports, located on the other section. Consequently, there have to exist at least one 
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bar in the direction of the external force connecting the two sections and the total area of the orthogonally 
displayed bars have to be greater than the minimum area needed to carry the external force. Considering 
Figure 3 and the fact that the area of bars 31-36 is equal (see Fig. 1), all the bars 31-36 have to be present 
and their minimal area needs to carry external forces Fx to the supports located on the other section. 

3.3 Inner-nodes cuts 

Inner-nodes cuts apply for all nodes without external forces or supports. They arise from an idea there 
cannot exist single horizontal (or vertical) bar in a node. If there would not be any horizontal force carried 
through the node then no bar was needed, otherwise there have to be at least two bars to carry the normal 
force (Rasmussen et al., 2008). However, inner-nodes cuts are useful only for topology optimization. 

4. Results 

Topology optimization of the 52-bar truss benchmark was launched on a computer with 16 cores, a limit 
of 128 GB RAM and GUROBI MILP solver (Gurobi Optimization, Inc., 2015). The globally optimal 
truss structure with a weight of 1902,606 kg has been obtained. The optimization progress is shown in the 
Fig. 4. 

Note that the described implementation is not easily applicable for general use; still, it did 
significantly speed up the optimization. The global optimum of the benchmark truss is useful as 
a comparison for faster but not global heuristic algorithms or as a lower bound for sizing optimization. 

 
Fig. 4: 52-bar benchmark truss topology optimization. 
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