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Stavebnı́ fakulta

Katedra mechaniky

Modular-Topology Optimization of Truss Structures
Composed of Wang Tiles
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1 Introduction
Finding optimal structures has been a challenging task in the interest of many researchers, see e.g.
[5] for an overview. The so-called structural optimization usually tries to achieve one (or more) of
the following objectives: the structure of minimum weight, the most stiff structure or the structure as
insensitive to instability and buckling as possible.

Although several different objectives exist, they have something in common – they approximately
denote the requirement of an investor to be economical. For mass production, however, another aspect
is also important – modularity. Prefabricated modular products are produced off-site in controlled
environments, leading to high-quality products and significant time savings by a parallel execution of
several building phases.

Optimal distribution of material within structure can be viewed from two scales: the macro-scale
and the micro-scale levels. Due to enormous computational demands when dealing with both the
levels concurrently, these two scales are commonly being separated, see eg. [24], resulting in mi-
crostructures being tailored at specific property [6], rather than at specific application [2]. Another
drawback of the multi-scale model is the lack of the ability to constrain adjacent microstructural cells
to be compatible on edges [2], limiting thus possible industrial utilization.

To deal with the problem of connectivity of cells, several approaches have been developed. While
some rely on post-processing of cells by smoothening material distribution across their edges [19],
another utilize periodic or layered microstructures [2]. In [21] a single microstructural cell is gradated
along specified dimensions, leading to stretching and extensions of the cell. However, all the present
approaches involve microstructural periodicity.

In this paper we approximate the microstructural cells with trusses, similarly to [1], and utilize
aperiodic vertex-based Wang tiling [15] to describe their assembly plan. Finally, we optimize concur-
rently the assembly plan of individual tiles (modules) and their topology through two-level optimiza-
tion approach, consisting of second-order cone programming and genetic algorithm. The developed
approach is applied on an example beam.
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2 Background

2.1 Vertex-Based Tiling
The idea of domino-like Wang tiles has been firstly proposed in [23] by Hao Wang, hence the name
Wang tiles. Wang tiles are a set of squares with colored edges and fixed orientation. To create valid
tiling the tiles are placed next to each other in a way that the adjoining edges are assigned the same
color.

Because continuity of the tiling enforced by colored edges and ability of some tile sets to ef-
ficiently tile aperiodic patterns [10], Wang tiles are used in computer graphics for texture synthesis,
tile-based texture mapping and for generation of Poisson disk distributions [7]. The colored edges can
not, however, secure non-violation of continuity by formation of artifacts in the close surroundings to
tile corners. To solve the so-called corner problem [7], corner tiles, with the connectivity information
stored in colored corners, have been developed [15]. Their other advantages compared to the classical
edge-based Wang tiles lie in simpler generation of valid tiling, reduced memory requirements and
simpler generalization to multiple dimensions.

In this paper we adopt the corner tiles, but call them vertex-based Wang tiles to highlight their
simple generalization to 3D and simultaneously preserve terminology among dimensions. The com-
plete set of the planar vertex-based tiles over two colors, used throughout this paper, contains one
vertex-based tile for each possible combination of colors, as shown in Fig 1.

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Figure 1: The complete set of vertex-based Wang tiles over two colors.

To create a valid assembly plan of the tiling the vertex-based tiles are placed such that the vertex
shared by surrounding tiles has the same color; compare Fig. 2b and 2c. Each color is assigned
an integer value [15], here we use 0 for white and 1 for blue, so that rectangular tiling can be de-
scribed by connectivity matrix C ∈ {0,1}(nt,y+1)×(nt,x+1), with nt,y ∈ Z>0 and nt,x ∈ Z>0 being the
numbers of tiles in vertical and horizontal direction, respectively. The unique equivalence between
the connectivity matrix and the assembly plan is shown in Fig. 2a and 2b.

C =

1 1 1 0
1 1 0 1
1 0 0 0


(a) Connectivity matrix

16 8 10

8 2 5

(b) Valid tiling

16 14 10

8 2 5

(c) Invalid tiling

Figure 2: Illustration of: (a) connectivity matrix and its correspondence to valid tiling (b), (c) example
of invalid tiling.

Utilizing the complete set of vertex-based tiles over a limited set of colors secures that all tilings,
described by any connectivity matrix containing only the integer values assigned to the color set, are
valid.

2.2 Truss Optimal Design
Trusses are structures consisting of joints and straight bars transmitting only axial forces. Optimal
topology of the least compliant truss, for a given boundary conditions, should have the most of its
structural stiffness aligned with the principal strains [17], whose trajectories are generally not straight.
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Subsequently, the optimal design may contain infinite number of bars, making the fabrication impos-
sible. Therefore, the fixed design domain D is usually discretized into a finite design space consisting
of a set of nj fixed admissible joints and nb feasible bars. The discretization is usually referred to as
ground-structure [9].

Common design variables of the optimization are cross-sectional areas a ∈ Rnb
≥0, having the pos-

sibility to attain zero values. Through the convergence process the bars that do not contribute to
structural stiffness are removed and topology of the truss is altered. Therefore, this type of optimiza-
tion is called topology optimization [5].

In truss topology optimization there exist several approaches towards finding the optimal design.
In traditional plastic design [9] the problem is stated in member forces only, trying to obtain the best
topology under static equilibrium constraint and bounds on allowed stresses; neglecting kinematic
compatibility. The optimization converges to a statically determinate1 solution [22] automatically
fulfilling the compatibility conditions [5], but only, when a single load case is considered. Similarly
to the multiple loads [18], enforcing modularity into the plastic formulation generally leads to stat-
ically indeterminate optimal designs, implying that the static equilibrium is not uniquely solvable
and without kinematic compatibility the axial forces are not distributed based on stiffnesses. Subse-
quently, the strains generate stresses that are not, in general, within the prescribed bounds. Hence,
plastic formulation is not appropriate for modular design and kinematic compatibility needs to be
considered.

The plastic design does, however, create a lower-bound [5] to the well-known elastic design for-
mulation. In this paper we aim at finding the least-compliant design subjected to a volume constraint
(1c) and compatibility conditions (1b). The optimization problem is then stated as

min
a∈Rnb ,u∈Rndof

1
2

fTu (1a)

s.t. K(a)u = f, (1b)

lTa≤V , (1c)
a≥ 0, (1d)

where f ∈ Rndof denotes nodal forces column vector, ndof ∈ Z>0 refers to the number of degrees of
freedom, u ∈ Rndof stands for displacements column vector, K(a) ∈ Rndof×ndof is structural stiffness
matrix, l ∈ Rnb stands for a column vector of bars’ lengths and V ∈ R>0 denotes an upper-bound on
total structural volume. The objective of the optimization c = 1

2 fTu, c ∈ R>0 (1a) is compliance, the
work done by nodal forces. The lower the compliance, the stiffer is the truss with respect to prescribed
loads.

The formulation (1) is a nonlinear non-convex optimization problem, which is therefore hard to
solve [14]. Based on [16] and Section 3.4.3 in [4] it can be, however, reformulated as a convex
second-order cone program (SOCP)

min
a∈Rnb ,τ∈Rnb ,s∈Rnb

1
2

nb

∑
i=1

τi (2a)

s.t. lTa≤V , (2b)
nb

∑
i=1

si

√
E
li

ri = f, (2c)∥∥∥∥(√2si
2ai−τi

2

)∥∥∥∥
2
≤ 2ai + τi

2
, ∀i ∈ {1 .. nb} (2d)

a≥ 0, (2e)

1Statically determinate design means that the axial forces can be uniquely determined from the static equilibrium
only [18].
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that is efficiently solvable to global optimality by interior-point methods [3] by several available
solvers. In Eq. (2) the symbol si ∈ R stands for axial force of the i-th bar, E ∈ R>0 denotes modulus
of elasticity, li is the length of i-th bar and ri ∈ Rndof denotes the i-th column of the static matrix
A ∈ Rndof×nb . The objective (2a) is equal to compliance.

It should be also noted that the notation ‖·‖2 denotes L2 norm, so that ‖x‖2, x ∈ R2 describes
a second-order cone.
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3 Methodology
Let us assume fixed design domain D defining structural dimensions, and boundary conditions. In
order to achieve modularity of the structure the design domain is discretized into a rectangular grid,
forming tiles, see Fig. 3.

Figure 3: Example of a discretized design domain.

The discretized design domain is tiled by a limited set of nt repeating tiles (modules), where nt
should be sufficiently low to sustain modularity. Also, the neighboring tiles need to be compatible
to produce statically admissible structure that is able to transmit external loading to the supports. To
constrain feasible neighbors of each tile type in the set of nt tiles, vertex-based Wang tiles [15] over
two colors are used, so that nt = 16 contains the complete tile set. Wang tiles then add the ability to
define four unique types of horizontal and vertical edges, respectively, grant absolute compatibility
between fitting tile edges and subsequently provide behavior likewise jigsaw puzzle, recall Fig. 2.

In this paper we utilize truss tiles building together ground structure. For the optimization it is
proposed a two-level approach: in the upper level the assembly plan defining Wang tiling is optimized
with respect to the lower level – modular topology optimization.

3.1 Topology Optimization of Modular Truss Structures
The lower-level optimization aims at minimization of compliance for a given assembly plan with
a constraint on volume and elastic equilibrium, recall the optimization problem formulation (2).

Figure 4: Ground structure of a tile. The black solid lines represent tile-associated bars, the dashed
lines denote edge-associated bars. Scattered points represent joints.

All truss tiles from the tile set are defined to have the same tile ground structure, see Fig. 4 for
reference. Bars in all tiles are divided into three sets: ones lying only in the interior of a tile, called
tile-associated, are bound solely to the specific tile type in which they lie, such bars are drawn in Fig.
4 by solid black lines; bars coming through any edge of the tile, so that they do not start or end on
the edge, are called edge-associated, because they are tied to the edge type; in Fig 4 they are drawn
by dashed line. Similarly, it is further possible to introduce vertex-associated bars that come through
a vertex of a tile and do not start or end there. These bars would then be bound to the specific vertex
type, they are not, however, used in this paper; we list them just for the sake of completeness.

6



1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16
(a) Tile-associated bars

(b) Edge-associated bars

Figure 5: Division of bars into tile-associated (a) and edge-associated (b). The scattered point repre-
sent joints.

Afterwards, it is needed to ensure the same topology across equal tile types and equal edge types.
This has been done through division of bars into groups, such that all bars in the same group are
assigned the same cross-sectional area. Assignment of groups to bars is provided by so-called group
vector g(C) ∈ Znb

>0. The group vector assigns each bar of the ground structure a single number in the
range of {1 .. ng}, with ng denoting the number of groups. If we evaluate, for example, the complete
tile set built by tiles depicted in Fig. 4, we obtain 16× 48 = 768 groups of tile-associated bars, as
the complete tile set contains 16 tiles and each tile consists of 48 tile-associated bars, see Fig. 5a;
similarly, each edge of the tile includes 3 edge-associated bars, so that 4 vertical and 4 horizontal
types of edges yields totally 2× 4× 3 = 24 groups of edge-associated bars, see Fig. 5b. We have
therefore ng = 792 altogether.

From the group vector it is further possible to asses group matrix G(C) ∈ {0,1}nb×ng that is
defined ∀i ∈ {1 .. nb} and ∀ j ∈ {1 .. ng} as

G(i, j) =

{
0 for j 6= g(i)
1 for j = g(i)

. (3)

By introduction of groups the original topology optimization formulation (2) is modified, reducing
the count of cross-sectional areas from nb to ng, as they are substituted by grouped cross-sectional
areas ag ∈ Rng

≥0. Consequently, the volume constraint (2b) transforms into

lTG(C)ag ≤V (4)

and the second-order cone constraint (2d) translates into∥∥∥∥∥
( √

2si
2ag,gi−τi

2

)∥∥∥∥∥
2

≤
2ag,gi + τi

2
, ∀i ∈ {1 .. nb}, (5)

with ag,gi being the grouped cross-sectional area belonging to the i-th element of the group vector
g(C).

7



The final formulation of modular topology optimization is then

min
ag∈Rng ,τ∈Rnb ,s∈Rnb

1
2

nb

∑
i=1

τi (6a)

s.t. lTG(C)ag ≤V , (6b)
nb

∑
i=1

si

√
E
li

ri = f, (6c)∥∥∥∥∥
( √

2si
2ag,gi−τi

2

)∥∥∥∥∥
2

≤
2ag,gi + τi

2
, ∀i ∈ {1 .. nb} (6d)

ag ≥ 0. (6e)

3.2 Assembly Plan Optimization
Let us define an operator M : C 7→ c that maps, through the convex modular topology formulation (6),
the space of binary connectivity matrices C ∈ {0,1}(nt,y+1)×(nt,x+1) into scalar space c ∈ R>0. Then,
the upper-level optimization searches such an assembly plan C∗, for which it stands that

c∗ = M(C∗) (7)

and
c∗ = min{c ∈ R>0,c = M(C),C ∈ {0,1}(nt,y+1)×(nt,x+1)}, (8)

which is a (non-convex) NP-complete combinatorial problem with globally optimal connectivity ma-
trix C∗ and globally optimal compliance c∗. To emphasize the influence of the connectivity matrix C
on the objective value the reader is referred to the Section 4, especially to Fig. 7b and Fig. 8a.

Due to the nature of (8) its direct solution is difficult even for small-scale problems, as there does
not exist any deterministic polynomial time algorithm for its solution, in the meaning of C∗ and c∗.
Therefore, we have adopted meta-heuristic genetic algorithm (GA) [12] that has proved convergence
to solutions near global optimum.

GA is a stochastic optimization algorithm that mimics natural process of evolution. Through
generations the initial population evolves. Following the natural selection, individuals with higher
fitnesses (i.e. lower c in our case) are preferred to give birth to offspring, who inherit the most
of their parents’ genetic information through so-called cross-over, improving the overall population
fitness. As in real life, offspring’s genes might also become mutated, which contributes to diversity
of individuals.

In the optimization of assembly plan the genetic information, chromosome, is represented by
connectivity matrix C, as it uniquely determines the fitnesses of individuals. Therefore, the initial
random population is generated by random connectivity matrices.

Offspring are born by cross-over of two parents chosen by tournament selection. The offspring
inherit its genetic information from both its parents through uniform cross-over with probability of
0.94. The genes are mutated with probability of 1/nel,C, with nel,C denoting the number of elements
of C. Afterwards, the old generation dies except for an elite individual with highest fitness value,
who joins just born population, to avoid losing the best solution. To extend the search space of
algorithm, we have also enforced diversity of the population, replacing duplicate individuals by new
ones randomly generated.
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4 Examples
The proposed approach has been successfully implemented in MATLAB and applied on example
design of a planar hinge-supported beam. Firstly, a relatively coarse discretization is utilized in order
to provide comparison of results of the two-level optimization with global optimum obtained by brute-
force enumeration. Subsequently, we also present fine discretization and compare the coarse and fine
designs.

All the computations have been performed on Intel R© Xeon R© E5-2630 with 32 logical cores and
128 GB RAM. Modular topology optimization (6) have been solved by commercial solver Gurobi [11].

4.1 Coarsely Discretized Beam
The example beam of dimensions 8×3 m, see Fig. 6, is discretized into 24 tiles, each of the unit size,
and tiled by a complete set of vertex-based Wang tiles, with all the tiles having the same tile ground
structure, as shown in Fig. 4. The bars are prescribed Young’s modulus E equal to 1 Pa. Boundary
conditions are stated as follows: hinge supports are located in the very bottom-left and bottom-right
corners of the beam; and an external force with magnitude of 10 N acts in the midspan of the beam,
causing bending. It should be noted that the selected properties do not describe any specific material
nor realistic situation and have been chosen only to avoid scaling of the optimization problem and
concurrently provide numerical stability.

4 m 4 m
8 m

3
m

10 N

Figure 6: Dimensions, discretization, boundary conditions and ground structure of the example beam.

The price of modularity is clearly a worse compliance [13]. Because all tiles from the complete tile
set are defined to have the same tile ground structure the ground structure can be uniquely assessed.
Subsequently, it is possible to state an ideal objective value by performing topology optimization
without application of groups (2), resulting in a lower-bound to c∗ (8). Considering the evaluated
example we obtain cideal = 61.9 Nm, as shown in Fig. 7a. Reached objective value, naturally, can not
be overcome in any modular design, given the same ground structure, but it is advisable to get close
to the attained lower-bound as much as possible.

Similarly to the ideal design it is straightforward to obtain an upper-bound worst-case objective
value by tiling the beam by only one tile type, i.e. the connectivity matrix C containing all zeros or all
ones. The result of the worst-case topology optimization with optimal objective cworst = 191.2 Nm is
shown in Fig. 7b. Based on the ideal and worst-case objective bounds it implies that c∗ ∈ [61.9,191.2]
Nm.

In order to compare designs reached by two-level optimization, proposed in Section 3, with proven
globally optimal solution obtained by brute-force enumeration, we have enforced symmetricity of
the connectivity matrix C along midspan of the beam, limiting thus the number of combinations
of assembly plans from 240 to 220. Although such assumption dramatically decreases the problem
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(a) Ideal design, cideal = 61.9 Nm
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(b) Worst-case design, cworst = 191.2 Nm

Figure 7: Lower-bound (a) and upper-bound (b) solutions to c∗.

size, it should be noted that the global optimum might not be identical to the case without enforced
symmetricity.

The number of combinations can be further reduced by recognizing the fact that the vertex types do
not have any actual physical meaning; therefore topology optimization of any assembly plan denoted
by C yields equal result to the optimization of reversed C (that is C having interchanged all 0 with 1
and vice-versa). Subsequently, it is needed to enumerate 219 combinations.
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(a) Globally optimal design

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

(b) Globally optimal tile set

Figure 8: Globally optimal design (a) and tile set (b) of the coarsely discretized beam with c∗ =
62.7 Nm.

Evaluation of all the combinations took 9.5 hours. Throughout the enumeration globally optimal
design with c∗ = 62.7 Nm has been obtained, see Fig. 8a, being thus only 1.3 % more-compliant than
the ideal design. The tile set of the globally optimal design, shown in Fig. 8b, contains 13 non-empty
tiles, making 3 empty tiles to be potentially omitted. Overall, the enumerated combinations generate
nearly Gaussian distribution with the mean value of 107.7 Nm and standard deviation equal to 14.6
Nm, see Fig. 9.
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Figure 9: Comparison of the results achieved by brute-force enumeration and the proposed two-level
optimization.
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The actual two-level optimization was launched 50 times, each time with different random pop-
ulation of 16 individuals, evaluating the statistical properties of the two-level optimization approach.
The convergence of c of the best individuals and the mean value of all runs though generations are
shown in the Fig. 10.

The initial random populations uniquely determine topologies of mean objective value equal to
107.4 Nm, being thus in a fair correspondence with the mean value 107.7 Nm of the nearly Gaussian
distribution. Throughout prescribed 40 generations of the genetic algorithm the objective decrease
to the final mean value of the best individual 67.4 Nm, being in average 8.9 % worse than the ideal
solution and 7.5 % worse than the global optimum. Through the two-level optimization the second
best solution has been reached. Totally, all the achieved objectives are within the lowest 0.2 % of all
the combinations, recall Fig. 9.
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Figure 10: Convergence of 50 independent runs of the proposed two-level optimization approach with
random population. Displayed designs sample the convergence of the algorithm.

4.1.1 Relation Between Connectivity Matrix and Design Quality

Another question of interest is existence of a relation between quality of designs with respect to
connectivity matrices, to permit creation of quality designs from scratch.

The first evaluated aspect is a ratio of zero and nonzero elements in the connectivity matrix. By
plotting all the enumerated combinations it is obtained a boxplot shown in Fig. 11, from which it
implies that better designs, with the lowest mean objective value and smallest variance, are obtained
when the number of nonzero elements in C is equal to the number of zeros in C. However, enforcing
such assumption into optimization might also avoid the global optimum, as in this example.

Secondly, it obvious from the worst-case design that the quality depends on the number of tiles
that are utilized from the complete tile set. All the enumerated combinations create a boxplot shown in
Fig. 12, leading to the conclusion that the higher the number of utilized tiles, the better design should
we, averagely, expect. Again, strictly enforcing such assumption might avoid the global optimum.

Finally, to provide a good guess of the connectivity matrix that determines a low-compliant design,
the matrix should consist of similar counts of nonzero and zero elements and the resulting assembly
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Figure 11: Compliance as a functional of the count of nonzero elements in symmetric part of C of the
example beam. The crosses denote global optimum.
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Figure 12: Compliance as a functional of the count of utilized tiles in the example beam with enforced
symmetricity of C. The cross denotes global optima.

plan should contain, if possible, all the tiles from the complete tile set.

4.2 Finely Discretized Beam
Let us consider the same design domain, recall Fig. 6, finely tiled by 16× 6 tiles of a side length
equal to 0.5 m. To sustain comparability with the previous case, it is again enforced symmetricity of
the connectivity matrix, allowing thus 262 unique combinations of optimal topologies.

Such a huge amount of combinations and larger number of degrees of freedom make it impossi-
ble to perform brute-force enumeration that have been accomplished in the coarse discretization; so
that we are left in the proposed two-level optimization without the knowledge of the true global opti-
mum. It is, however, similarly to the previous example, straightforward to obtain the ideal compliance
cideal = 61.1 Nm, refer to Fig. 13a, and the worst-case compliance cworst = 228.7 Nm, see Fig. 13b,
so that c∗ ∈ [61.1;228.7] Nm.

(a) Ideal design, cideal = 61.1 Nm
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(b) Worst-case design, cworst = 228.7 Nm

Figure 13: Lower-bound (a) and upper-bound (b) solutions to c∗.

Compared to the coarse discretization, fine discretization produces richer ground structure, de-
creasing thus slightly the ideal objective value. On the contrary, the worst-case objective noticeably
increases, as more tiles are constrained to satisfy all boundary conditions, i.e. transmit the force. Such
a consequence of modularity has also been reported in [13].
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The two-level optimization was launched 20 times, see Fig. 14 for convergence of the algorithm.
The initial random populations of 29 individuals determine designs of mean objective value 156.5
Nm, significantly increased (45.3 %) compared to the coarse discretization. Throughout 70 gener-
ations the two-level optimization converged to the mean objective value of 82.1 Nm, being 34.4 %
more-compliant than the ideal design. The best reached design with c = 71.6 Nm is shown in Fig. 15,
being 17.0 % worse than the ideal compliance.
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Figure 14: Convergence of 20 independent runs of the proposed two-level optimization approach with
random initial population applied on finely discretized example beam.
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Figure 15: Best design (c = 71.6 Nm) of finely discretized example beam obtained through the two-
level optimization.
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5 Conclusions
Throughout this paper a novel two-level optimization approach producing modular trusses has been
developed. The lower-level optimization represents standard truss topology least-compliant design
problem extended to structural modularity using groups. The optimization problem is formulated as
a convex SOCP that is efficiently solvable to global optimality.

Structural modularity is explicitly stated by an assembly plan of vertex-based Wang tiles over two
colors, generating thus 16 unique modules and securing compatibility and continuity among edges.
Because for any assembly plan there exists a unique globally optimal solution to the lower-level mod-
ular topology optimization, the upper-level optimization aims at finding such an assembly plan, for
which it is obtained the least-compliant topology overall. Because the upper-level optimization makes
the problem non-convex combinatorial, we propose to solve it by meta-heuristic genetic algorithm.

The developed approach has been successfully demonstrated on a solution of example beam, prov-
ing, that enforcing modularity to the structure might increase compliance only marginally (1.3 %)
compared to the ideal non-modular beam, while utilizing 13 nonempty tiles. The two-level optimiza-
tion secures convergence to solutions near global optimum, so that in the example all achieved designs
lie below the 0.2 % quantile of all designs.

In the near future it is planned to extend the approach to 3D, so that the optimal tile sets could be
applied in modular design of 3D-printed lego-like products [20] or combinatorial aperiodic metama-
terials [8]. It is also of interest to extend the formulation to continuum framework [2].
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