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Anotace

Tvarová optimalizace příhradových konstrukcí je jednou z nejrozvinutějších disciplín optimal-
izace konstrukcí. Běžným cílem projektanta je návrh příhradových konstrukcí, které jsou optimální
vzhledem ke specifikovaným požadavkům investora. Tato práce zadanou konstrukci rozděluje do
omezené sady Wangových dlaždic a zavádí dvouúrovňovou topologickou optimalizaci, ve které je
zároveň optimalizován skladebný plán dláždění a průřezová plocha jednotlivých prutů. Výsledkem je
konstrukce, která má minimální hmotnost a je prefabrikovatelná.

Anotation

Topology optimization of trusses is one of the most developed field of the structural optimiza-
tion. The usual aim of a designer is to design trusses that are optimal in some objective(s) prescribed
by the investor. This work divides the initial structure into a limited set of Wang tiles and performs
two-phase topology optimization of the tile placement and of the cross-sectional areas of individual
bars, securing thus the possibility of prefabrication of the structure and concurrently providing the
least-weight structure.

Keywords

Truss topology optimization, plastic formulation, simulated annealing, linear programming, Wang
tiles.
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1 Introduction

Topology optimization of trusses is one of the most developed field of the structural optimiza-
tion. The usual aim of a designer is to design trusses that are optimal in some objective(s) prescribed
by the investor. Common objectives can be, for example, the least weight or the maximum stiffness.

Typical design variables of the topology optimization are cross-sectional areas of individual
bars. Therefore, mostly two approaches are being used: either continuous or discrete optimization.

Discrete topology optimization prescribes a list of possible cross-sectional areas available for
each bar. The problem is thus usually solved by some sort of enumeration method (e.g. branch-
and-bound algorithm), the computational demands are thus enormous and even 10-bars truss can be
a challenge when the guaranteed global optima are to be sought.

The second approach, continuous topology optimization, can be, under suitable assumptions,
solved very rapidly, using convex optimization methods. The drawback is that the cross-sectional
areas of individual bars in general differ, such trusses could thus be hardly prefabricated which makes
the use case limited.

The aim of this paper is to combine the benefits of both the approaches into one, hence making
the optimization feasible in a limited time and concurrently allow to prescribe a limited set of contin-
uously varied cross-sectional areas using groups. To ensure the true optimality of the final truss the
truss is divided into a limited set of Wang tiles and a two-phase optimization approach is presented.
The developed theory is implemented using MATLAB software.

This paper is structured as follows: Firstly, truss topology optimization (the lower-level of the
two-phase optimization) is described and basic properties of the optimal design are stated. In the sub-
sequent chapter we introduce an idea of tiling of the initial structure and add groups into the original
optimization problem formulation. Also, three different types of initial tiles are presented. Then, tile
placement optimization (the upper level of the two-phase optimization) is adopted and solved using
the simulated annealing algorithm. The last chapter presents selected illustrative examples.

2 Truss topology optimization

Finding optimal structures has always been a challenging task in the interest of many re-
searchers. The so called structural optimization problems usually try to achieve one of the following
objectives: the least-weight structure, the stiffest structure or the structure as insensitive to instability
and buckling as possible [Peter W. Christensen, 2009].

(a) Initial truss.
(b) Result of topology optimiza-

tion.

(c) Result of shape optimization.

Figure 2.1: Comparison of topology and shape optimization of a 10-bars benchmark truss. In figure
(a) the initial truss is shown. The truss in the figure (b) represents a possible result of
topology optimization. The last figure (c) presents a result of shape optimization.
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Structural optimization can be generally divided into three classes. In the sizing optimization
the cross-sectional areas of individual members are optimized. The second class, shape optimization,
considers fixed nodal connectivity and the location of nodes, structural shape, is optimized. The last
class, topology optimization, the subject of this chapter, is similar to the sizing optimization, it does,
moreover, permit the individual members reach a zero cross-sectional area and vanish.

Both the topology and shape optimization allow the designer to find optimal geometry, thus
can be also called geometry optimization. Simultaneous optimization of shape and topology is called
layout optimization. For illustrative examples see Figure 2.1.

2.1 Michell’s optimality criteria

We will now focus on topology optimization of truss structures. The fundamental properties of the
optimal grid-like structures in a structural domain D were given by [Michell, 1904], who derived
optimality for the least volume trusses subjected to stress constraints and a single loading condition.
The cross-sectional areas of individual bars are allowed vary continuously.

Let σT,i and σC,i denote the bounds on the permissible stresses in tension and compression of
the ith member, respectively. The longitudinal stress of the ith member σi is then constrained by

−σC,i ≤ σi ≤ σT,i. (2.1)

Theorem 1. The least volume truss subjected to stress constraints and a single load condition is
fully-stressed.

Proof. Let us consider there exist a member j of the truss strictly fulfilling the constraint

−σC,j < σj < σT,j. (2.2)

The axial force of the jth member can then be, considering linear elasticity and homogeneous
material, computed as

sj =

∫
A

σjdA =

∫
A

EjεjdA = Ejεj

∫
A

dA = Ejεjaj = σjaj, (2.3)

where Ej denotes the Young’s modulus of the jth bar, εj stands for the strain of the jth member and
aj is the cross-sectional area of the jth member, respectively. Consequently, the cross-sectional area
of the jth member can be stated as

aj =
sj
σj
. (2.4)

Based on the limits of the permissible longitudinal stresses it is easy to specify a lower bound
on the cross-sectional area of the jth member:

amin,j =


−sj
σC,j

for sj ≤ 0

sj
σT,j

for sj ≥ 0
. (2.5)

In the case of compressional axial force and after the application of the Equation (2.2) we
obtain the inequality

sj
σj

>
−sj
σC,j

⇔ aj > amin,j. (2.6)
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The same procedure can be similarly applied for the case of tensional axial force

sj
σj

>
sj
σT,j

⇔ aj > amin,j. (2.7)

Because the length of the jth bar has not changed, the not-fully-stressed truss simply can not be
the least weight, as the cross-sectional area of the jth bar can be further reduced to the corresponding
amin,j value, making thus the truss lighter.

Let us denote the column vectors of compressive and tensile axial forces of all bars by sC and
sT, respectively. The column vectors are prescribed to contain only non-negative numbers, hence the
axial forces of all members s can be expressed as

s = −sC + sT. (2.8)

It should be noted that if the members of the truss are manufactured from the same material
the least weight optimization is equivalent to the least volume optimization. Based on Equation (2.5)
we can thus write the volume of the optimal fully-stressed truss as

V = lT(sC � σC + sT � σT), (2.9)

where the symbol � represents element-wise division, l is a column vector of lengths of all members
and column vectors σC and σT denote the bounds on the maximal allowed stresses in compression
and tension of all members, respectively.

The optimal least weight truss also needs to satisfy the equilibrium conditions against the
specified static load and there must exist deformations compatible with the strains [Ohsaki, 2011].
Also, the so called Michell truss consists of bars arranged in the directions of the principal strains.
Because the trajectory of the principal strains is generally not straight (for example see Figure 2.2)
the total count of bars can be infinitesimal.

Figure 2.2: Example of Michell truss.

2.2 Ground structure approach

To overcome the problem of infinitesimal count of bars [Dorn et al., 1964] proposed an approxi-
mate solution using the so called ground structure approach. The basic idea of the ground structure
approach is a discretization of the structural domain D into a finite set of fixed nodes and a set of
potential connections between them [Bendsoe and Sigmund, 2004]. Throughout the optimization the
continuous cross-sectional areas are considered as continuous design variables and they are allowed
to take zero values, thus enabling the change of topology by vanishing members.

6



Figure 2.3: Example of highly connected ground structure.

2.2.1 Plastic formulation

In the case when a ground structure is subjected to a single load case, only elastic and linear conditions
are considered and the stress bounds are prescribed, the optimization problem can be formulated as
a linear program

minV =min lT(sC � σC + sT � σT) (2.10a)

s.t.:
(
−A,A

){sC
sT

}
= f (2.10b)

sC, sT ≥ 0, (2.10c)

where f denotes a column vector of nodal forces and A denotes nodal equilibrium matrix. For each ith
member only one of the sC,i or sT,i can be equal to a nonzero value, as there can not exist a situation
in which a bar simultaneously carries both the tensional and compressional force.

The objective of the plastic formulation is a minimization of the structural weight (see Equa-
tion (2.10a) and Equation (2.9)) such that the resulting optimal structure is capable of carrying the
prescribed nodal forces f through bars into fixed supports. The just described condition is actually
expressed by the static Equation (2.10b) stating the equilibrium between the nodal forces f and the
axial forces s.

All Equations (2.10) are linearly dependent on the design variables s, hence providing a linear
formulation, which can be efficiently solved to global optimality by several available solvers. The
basic properties of the optimal trusses are established by the previously described Michell’s optimality
criteria. Firstly, any optimal truss has to be fully stressed, which we have already proven in the
Theorem 1.

The structure needs to be able to carry the nodal forces into supports, therefore the Equation
(2.10b) has to be solvable. Let us now look closer on the nodal equilibrium matrix A. The rows
of the matrix represent degrees of freedom of the ground structure and the columns correspond to
all permissible connections between them. The Equation (2.10) does have a solution if one of the
following conditions is satisfied:

• The final matrix A is regular, i.e. the rank of the matrix A is equal to the number of columns
of the matrix A. This condition can be equivalently rewritten to the statement: Matrix A is
regular if the count of degrees of freedom of the optimal structure is equal to the number bars
with non-zero cross-sectional area. Consequently, the solution of the equation As = f can be
uniquely determined and the final structure is statically determinate.

• The final matrix A is singular, so the rank of matrix A is lower than the number of columns of
the same matrix; or similarly, the final truss is statically indeterminate and the equation As = f
has an infinite count of solutions.
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Based on the above theory it can be assumed that the least volume (weight) truss will be
statically determinate, as the structure contains lesser bars. We have not proven it, but this statement
is generally true for a single load case.

Another important property of the plastic formulation is that the result of the least weight op-
timization is in the case of a single load case a dual problem of the minimum compliance formulation
[Bendsoe and Sigmund, 2004], hence both the formulations are equivalent.

It should be noted, however, that the problem formulation in Equation (2.10) does not include
any compatibility or stress-strain relation. For a single load case this condition is not needed, when the
optimal solution is statically determinate and thus the stress-strain relation is automatically satisfied.
Another reason is that such formulation is not a linear program and thus not so rapidly solvable
to global optimality. In the case of multiple loading conditions and/or prescribed groups of cross-
sectional areas the solution is not, in general, statically determinate. The optimal plastic design is
then not equivalent to the optimal elastic design, but it can be used as a lower bound of the elastic
formulation.

2.2.2 Post-processing

The resulting least-weight truss usually consists of several artifacts. These can be removed by further
post-processing, such that reduced-optimal-structure (ROS) is obtained [Zegard and Paulino, 2014,
Dorn et al., 1964]:

• Nodes in which only two collinear bars are present are removed and the bars merged to a single
long one.

• Nodes in which no bar is present are removed.

• Bars associated with the basic variables of the linear program should have a minimal cross-
sectional area amin > 0 to account for imperfections.

3 Tiling of the initial truss

The result of topology optimization presented in the previous chapter is, generally, a globally
optimal least weight and minimal compliance truss. It is common that, in case of no symmetry, each
bar of the optimal truss has a unique cross-sectional area. Also, the number of bars of the optimal
truss is not known in advance. The optimal structure thus can be inappropriate for practical usage –
the truss consisting of so many non-repetitive elements that it would be just too time-consuming and
uneconomical to build, see for example Figure 2.2.

To overcome the problem of a huge amount of different cross-sectional areas it is possible to
divide the initial ground structure into a tile-based grid (see Figure 3.1) composed of a limited set of
tiles, so that each tile can be placed multiple times or be unused, making thus the prefabrication of
such structures possible.

Figure 3.1: Tiled 2-dimensional beam.
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Placed tiles need to be compatible in a meaning that connected bars and nodes have to be able
to carry prescribed static loading into supports. Such structure is then called statically admissible.

To achieve statical admissibility one can either use an appropriate predefined tile set containing
a number of bars not participating on the transfer of static loads, or perform topology optimization
using groups that define bars with equal cross-sectional area. This paper deals with the latter approach.

3.1 Grouping of cross-sectional areas

Let us denote the total count of bars of the ground structure by nB and a group vector assigning
group number for each individual bar by g, the length of the group vector is thus nB. Bars which are
assigned the same group number share the equal cross-sectional area. Therefore, the total count of
cross-sectional areas nG is the number of unique elements in g.

The binary group matrix G of size nG × nB is then defined as

G(i, j) =

{
0 for j 6= g(i)

1 for j = g(i)
, (3.1)

where i = {1, 2, . . . , nB}. The initial optimization problem (see Equation (2.10)) can thus be rewritten
to:

minV =min lTa (3.2a)

s.t.:
(
−A,A

){sC
sT

}
= f (3.2b)

Ga ≥ sC � σC + sT � σT (3.2c)
a, sC, sT ≥ 0. (3.2d)

Note that because of the prescribed groups of cross-sectional areas the resulting optimal struc-
ture is not in general statically determinate, hence the optimal plastic design is not generally equiv-
alent to the optimal elastic design and there may not exist compatible displacements fulfilling the
prescribed stress limits. This is caused by the fact that the normal stresses can be computed not only
based on the equilibrium (static) equation

σ = s� a (3.3)

that is used in the plastic formulation, but also from merged physical and geometric equations

σ = E� εlx = E� drlx
dxl

= E�∆l� l, (3.4)

where εlx represents local normal strain and rlx displacements along the local axis xl, respectively. The
symbol � represents Hadamard product, i.e. element-wise multiplication.

The resulting optimal structure is commonly statically indeterminate, the count of bars with
non-zero cross-sectional area is therefore greater than the rank of the final nodal equilibrium matrix A,
which is thus singular; and there does not exist unique solution to the Equation (3.2b). Consequently,
the stress vector computed by the Equation (3.3) is also not unique. In reality, the unique internal
forces s and stresses σ can be computed based on the stiffnesses of individual members from the
Equation (3.4), which is, however, not considered by the plastic formulation, making the optimization
problem not so tightly constrained. Subsequently, the result of the plastic formulation creates a lower
bound on the optimal elastic design.
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3.2 Tile design

In the previous sections we have introduced an idea to divide an initial structure into tiles (recall Figure
3.1) and it has been theoretically explained how to assign an equal cross-sectional area to multiple
bars. These two assumptions will be used in this section to define three truss tiles used throughout
this paper to assemble ground structures.

(a) Tile of type A. (b) Tile of type B. (c) Tile of type C.

Figure 3.2: Initial definition of three truss tiles. The blue circles represent nodes of the initial ground
structure and the black lines represent bars.

The most important aspects of the initial tile design seem to be, until the time of writing of
this paper, the connectivity of the tiles and the influence of the tile design on the degree of statical
indeterminacy of the resulting optimal structure.

Following the former aspect the design of the tile of type A (see Figure 3.2a) has been in-
troduced. The tile consists of 9 uniformly spaced nodes. Considering the height and the width of
the tile equal to 1 and coordinates of the centroid of the tile as (0, 0) the nodes are positioned in any
combination of the elements {−1

3
, 0, 1

3
}. The bars are generated in a way that the maximal allowed

length of a bar is equal to 1
9
.

A tile of type B (see Figure 3.2b) is very similar to the tile of type A. It contains additional
nodes in the place of visual intersections of bars from the former tile type, hence some prescribed
nodes are located on the edges and in the corners. The length limit of a bar is again equal to 1

9
. The

tile of type B served actually as an intermediate implementation between the types A and C.
The last tile type C, shown in Figure 3.2c, combines the design of the former tiles. While the

location of individual nodes is the same as in the tile of type B, the placement of bars, although in
most cases split, is based on the type A. The benefit of the tiles of type C is that the resulting optimal
structure has lower degree of statical indeterminacy and because the tiles do not contain any only
visual intersections they are easily producible.

3.2.1 Completely random tile placement

It has been already written that the connectivity of the tiles is needed to be ensured to produce a stati-
cally admissible ground structure. An initial approach can then be proposed:

• Creation of the initial tile set containing nW tiles of the same tile type.

• Random placement of tiles from the tile set into domain of a structure D, such that no blank
space is left. Assembly of ground structure.

• Division of bars from which the ground structure consists of into groups based on assumptions:
if any of the tiles from the tile set is placed multiple times, all such tiles share the same group
vector g. The individual bars exceeding the tile dimensions (also called overlapping bars; see
Figure 3.2a) need to share the same cross-sectional area in the both tiles where they appear.

As there exist an optimal solution of the Equation (3.2) it has been proven that this procedure
produces statically admissible tiled ground structure. The benefit of this approach is the relative ease
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of implementation. On the contrary, the simultaneous existence of overlapping bars and completely
random tile placement generally lead to results where the most of the final truss weight is placed in
the overlapping bars. Consequently, Wang tiles have been implemented to constrain the placement of
tiles.

3.2.2 Wang tiles

The idea of domino-like Wang tiles has been firstly proposed in [Wang, 1961] by Hao Wang, hence
the name Wang tiles. Wang tiles are a set of squares, each thus containing four edges. Each edge is
assigned an integer value that can be visualized as a specific color. To create a valid tiling the edges
shared between tiles need to have the same color. This work uses only binary values: 0 is rendered as
white and 1 as blue, see Figure 3.3 as a reference example.

C =


0 0 0 1 0

0 1 1 1 0 1
0 1 0 0 0

0 1 0 1 1 0
1 0 1 0 0

 ⇐⇒

Figure 3.3: Example Wang tiling with the connectivity information stored in edges.

Wang tiles are usually applied in computer graphics [Cohen et al., 2003] because of their
ability to tile a plane with aperiodic pattern even with a small tile set, which significantly accelerates
rendering of large aperiodic textures [Berger, 1966]. This attribute applies only to special tile sets
which are, however, not used in this paper. The usage of Wang tiles is advantageous as it offers us the
possibility to define several types of edges and corners.

Similarly to the tiles proposed in [Wang, 1961], where the connectivity information of indi-
vidual tiles is stored in their edges, the connectivity can be provided by the corners [Lagae and Dutré,
2006], introducing corner tiles. The corner tiles share all the attributes of the classical Wang tiles such
as the size of full tile set, but their connectivity is more easily stored, as the connectivity matrix C is
rectangular, for comparison see Figure 3.3 and Figure 3.4.

C =

1 1 0 0 0 0
0 0 1 0 1 0
1 1 1 1 0 0

 ⇐⇒

Figure 3.4: Example Wang tiling with the connectivity information stored in corners.

The full tile set of the classical and also corner Wang tiles consists of 42 = 16 tiles. Tile set of
corner tiles adopted in this paper is shown in Figure 3.5.

3.2.3 Assigning groups to the bars in tiles

In this section the corner tile set is considered to be composed solely by the tiles of type A (see Figure
3.2a). The same procedure can also be applied for the tiles of type B and C, though. The tiles of type
A have been chosen due to the fact they contain all the groups described in this section.
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1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16
Figure 3.5: Full tile set of corner Wang tiles.

Corner groups

Following the Figure 3.5 we have defined two types of corners of the tiles. The first type is rendered
in a white color and the corresponding integer value is 0, the second type is labeled by 1 and drawn
in a blue color. Let us now consider there exist bars coming exactly through corners of the tiles, as
shown in Figure 3.6, and there does not exist any node placed exactly in the corner. The bars fulfilling
this definition will be referred to in the following text as corner-associated bars.

(a) (b)

Figure 3.6: Corner groups of the tile set containing tiles of type A.

Based on the definition of Wang tiles and the requirement of fully-connected ground structure
it is clear that the corner-associated bars are bound to the specific corner type. The count of corner
groups is thus equal to the sum of unique corner-associated bars coming through each corner. The tile
set of type A thus includes 4 groups, as clearly shown in Figure 3.6.

Edge groups

Because there exist two types of corners represented by 0 and 1, respectively, it is possible to create
4 types of vertical and 4 types of horizontal edges, as a 2-combination of 0 and 1 values. All the
possible combinations are shown in the Figure 3.7.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.7: Edge groups of the tile set containing tiles of type A.

Similarly to the definition of corner-associated bars the edge-associated bars are bars coming
exactly through one edge (i.e. they can not come through corner) and concurrently any of nodes
associated with the bars are located exactly on the edge of a tile.

Consequently, the count of the edge groups is equal to the sum of the unique edge-associated
bars coming through each type of edge, hence in the considered example the count of edge groups is
equal to 7 · 8 = 56, see Figure 3.7.
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Tile groups

We have already defined corner-associated and edge-associated bars. The remaining bars, from which
the tile consists of, will be named as tile-associated bars, because they are bound only to the specific
tile.

The full tile set includes 16 tiles, see Figure 3.5, hence the count of tile groups is equal to sum
of the unique tile-associated bars in each tile. Because the tile of type A consists of 20 tile-associated
bars the count of tile groups in the considered example equals to 16 · 20 = 320, see Figure 3.8 for
reference.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p)

Figure 3.8: Tile groups of the tile set containing tiles of type A.

The total count of groups for the treated tile set thus equals to 4 + 56 + 320 = 380.

4 Two-phase optimization

The optimization of a tiled truss can be divided into two levels: the lower level, where global
topology optimization is launched on a given ground structure, see Equation (3.2); and the upper,
where the tile placement is optimized. The tile placement optimization, the main subject of this
chapter, is really important, as the difference of volume of the optimal truss between the best (usually
not known in advance) and the worst tiling is significant (for examples see Chapter 5).

4.1 Simulated annealing

Optimization tasks are in general divided into two categories [Cook, 1971] – problems that are solv-
able deterministically in a polynomial time (class P problems); the rest of problems, which are not
deterministically solvable in polynomial time, are of class NP. An example of the class P problem is
linear programming. NP class problems may be represented for example by commonly referenced
traveling salesman problem (TSP).

In reality both the above mentioned categories of optimization are common and both are
needed to be solved efficiently. In this chapter the non-convex NP-hard tiling problem is consid-
ered. One can choose two ways to obtain a solution: either deterministic optimization algorithms
with a price of huge computational demands and times or fast heuristic algorithms with a price of
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approximate or local solution. One of the most commonly used local-search heuristic algorithms is
simulated annealing.

4.1.1 Analogy with annealing of solids

Simulated annealing has been firstly introduced in [Kirkpatrick, 1984, Černý, 1985] as an analogy to
the physical process of annealing of solids, hence the name simulated annealing.

Annealing is a thermal process that is used to bring a solid into a low-energy state, while
improving properties of the solid. The first step is to increase the temperature of the solid such that
it melts. The particles, from which the solid consists of, are then arranged randomly. Afterwards, the
solid is very slowly cooled, permitting thus the particles to arrange into a minimal-energy grid.

According to this analogy it is possible to state the equivalence between the terminology
commonly used in optimization methods and the terminology used in simulated annealing [Sala-
mon et al., 2002]. The state of the solid is described byω, which is analogous to a feasible solution
x in optimization methods. The aim of the method is to reach a solution with the lowest energy
E = energy(ω), similarly to the objective function f(x). The optimal solution is then called
a ground state ω∗, which is equivalent to x∗. The overview of the used terminology is presented in
Table 4.1.

Simulated annealing Optimization problem
Stateω Feasible solution x

Energy E(ω) Objective function f(x)
Ground stateω∗ Optimal solution x∗

Temperature T Control parameter

Table 4.1: Equivalent terminology of simulated annealing and optimization problem.

4.1.2 Basic simulated annealing algorithm

The inputs to the simulated annealing algorithm are the initial feasible state ω0, initial temperature
T0, number of temperatures nT and number of steps nS. These parameters are set for the particular
optimization problem.

Firstly, the algorithm computes the energy E of the initial state ω0 and enters the iteration
cycle. The iteration cycle mimics slow cooling of the system with nT successive temperatures. The
system is then brought for each temperature T into equilibrium by using nS iterations.

Every iteration a new neighbor state ωT and its energy ET are computed. Neighbor state in
this context means that both the statesω andωT have "something" in common, hence the definition
of the neighbor(ω) function is mostly dependent on the optimization problem. The definition of
neighbor function used in this work is mentioned in the next section.

Because the aim of simulated annealing is to minimize the energy, it is checked whether the
neighbor-state energy ET is lower than the energy E. If the answer is positive the state will be
accepted, otherwise, the solution might be accepted within some probability, which is dependent on
the temperature T . Initially, when the temperature is high, almost all the states with higher energies
are accepted. As the temperature decreases the probability to accept states with higher energies also
decreases. Therefore, the algorithm, unlike gradient methods, avoids being trapped in a local optimum
even for non-convex problems and with correct settings converges to the global optima.

After all the nS iterations have been performed the temperature is decreased accordingly to the
cooling schedule predefined by function cooling(T ). The algorithm terminates when the tempera-
ture T has been (nT − 1) times cooled. Based on the algorithm settings and the number of iterations
either local or global optimum is obtained. The Algorithm 1 shows the pseudo-code of simulated
annealing.
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Algorithm 1 Simulated annealing
function SIMULATEDANNEALING(ω0, T0, nT, nS)
ω←ω0 . Get initial state
T ← T0 . Get initial temperature
E ← energy(ω) . Compute initial energy
for i← 1, nT do . For the count of decreasing temperatures

for j ← 1, nS do . For the steps while the same temperature
ωT ← neighbor(ω) . Compute trial neighbor state
ET ← energy(ω) . Compute energy of the trial neighbor state
∆E ← ET − E . Compute energy improvement
if ∆E ≤ 0 then . If the system energy is lower
ω←ωT . The state is always accepted
E ← ET . And energy is updated

else . Otherwise
if rand(1) < exp(−∆E/T ) then . Accepted based on probability
ω←ωT

E ← ET

end if
end if

end for
T ← cooling(T ) . Cool the temperature

end for
returnω

end function

4.1.3 Settings used for the two-phase optimization

Tiling of a structure composed by a full set of Wang corner tiles is described by a binary connectivity
matrix C, see Figure 3.4 for an example. The connectivity matrix thus describes the state of simulated
annealing algorithm. The initial connectivity matrix characterizing the ground state is created as
a random binary matrix of specified dimensions.

Based on the connectivity matrix the ground structure is assembled and topology optimization
is launched using the formulation of the problem defined by Equation (3.2). The topology optimiza-
tion then yields optimal cross-sectional areas and the value of the objective function – optimal truss
volume. The individual optimal cross-sectional areas are not anyhow used by the simulated anneal-
ing algorithm, the value of the objective function does, however, represent the current energy of the
system. The function energy(ω) is thus equivalent to a solution of the topology optimization with
a given ground structure uniquely defined by the connectivity matrix.

Neighbor state selection

Any state of the system can be described definitely by the connectivity matrix C. The neighbor state
is achieved in a way that a random element ind of the connectivity matrix is changed to the opposite
binary value:

Cind = 1−Cind (4.1)

See Algorithm 2 for the specific neighbor(ω) function pseudo-code.
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Algorithm 2 Neighbor state generation in simulated annealing
function NEIGHBOR(ω)
ωT ←ω
ind← random_element_indices(ω)
ωT(ind)← 1−ωT(ind)
returnωT

end function

Control parameters

The problem of the correct settings of control parameters have been widely addressed for example
in [Salamon et al., 2002, Burke and Kendall, 2013, Kirkpatrick, 1984]. The control parameters are
however very tightly connected to the specific optimization problem, it is thus not possible to propose
a generally valid parameters.

Therefore, the settings of control parameters used in this paper have been developed heuris-
tically based on the previous optimization runs. The parameter defining the number of temperatures
nT is computed as

nT = round(size(C, 1)× size(C, 2)× 1.5), (4.2)

where the size(C, j) function returns the size of jth dimension of the C matrix and the round
function rounds the input to the nearest integer. Parameter prescribing the number of steps nS is
computed as

nS = round(size(C, 1)× size(C, 2)/3). (4.3)

Cooling schedule and initial temperature

The last and most important parameter is the initial temperature T0, which can be computed by from

T0 =
Eworst − Eideal

50
, (4.4)

where Eworst represents an energy of the worst-case tiling – i.e. when all the elements of connectivity
matrix C are equal to 0 and thus the structure is tiled from only one tile type. The ideal energy Eideal

is obtained by optimizing the ground structure without prescribed groups. The temperature is in every
iteration multiplied by 0.95 and the system is thus cooled. Pseudo-code of a cooling function is
shown in Algorithm 3.

Algorithm 3 Cooling schedule of simulated annealing
function COOLING(T )

T ← 0.95T
return T

end function

5 Reference examples

This chapter presents three initial examples of the two-phase optimization. All the previously
defined tile types have been evaluated on a selected structure, beam tiled in a 11×3 grid. Each tile type
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is represented by an ideal solution, which has been obtained by launching the topology optimization
without specified groups of cross-sectional areas, see Equation (2.10); then by the two optimal results
of the two-phase optimization and the worst-case tiling.

The first optimal solution has been obtained by applying a condition that the connectivity
matrix C has to be symmetric, i.e. symmetric tiling of the structure is enforced. The second optimal
solution is an ordinary optimal solution obtained by the previously described two-phase optimization
approach. The optimization result with enforced symmetry is hoped to be of better quality.

It should be noted that all of the optimal topologies, except for the worst-case examples, have
been post-processed.

5.1 Beam tiled with 11x3 tiles of type A
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Figure 5.1: The figure (a) shows an ideal non-grouped beam tiled with 11 × 3 tiles of type A. The
ideal volume is Videal = 0.79433. The latter figure (b) shows the worst case solution of
the same beam. The worst volume is Vworst = 3.0837.
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Figure 5.2: Beam tiled with 11 × 3 tiles of type A after two-phase optimization. The figure (a) is
a result of optimization with prescribed symmetry with final volume V = 1.2481. The
figure (b) is a result of optimization without prescribed symmetry. The final volume is
V = 1.1863.
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5.2 Beam tiled with 11x3 tiles of type B
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Figure 5.3: The figure (a) shows an ideal non-grouped beam tiled with 11 × 3 tiles of type B. The
ideal volume is Videal = 0.80851. The latter figure (b) shows the worst case solution of
the same beam. The worst volume is Vworst = 3.4809.
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Figure 5.4: Beam tiled with 11 × 3 tiles of type B after two-phase optimization. The figure (a) is
a result of optimization with prescribed symmetry with final volume V = 0.96671. The
figure (b) is a result of optimization without prescribed symmetry. The final volume is
V = 1.0826.

5.3 Beam tiled with 11x3 tiles of type C

(a)

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

(b)

Figure 5.5: The figure (a) shows an ideal non-grouped beam tiled with 11 × 3 tiles of type C. The
ideal volume is Videal = 0.80851. The latter figure (b) shows the worst case solution of
the same beam. The worst volume is Vworst = 3.5419.
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Figure 5.6: Beam tiled with 11 × 3 tiles of type C after two-phase optimization. The figure (a) is
a result of optimization with prescribed symmetry with final volume V = 1.0299. The
figure (b) is a result of optimization without prescribed symmetry. The final volume is
V = 1.1687.

6 Conclusion

Within this work a two-phase optimization of Wang-tile-based trusses has been successfully
implemented in the software MATLAB. The results, as shown in the Chapter 5, proved it is possible
to lower the weight of a tiled structure, such that it does not significantly vary from the ideal result
of optimization of the non-tiled ground structure. The optimal tiled truss can then be more easily
prefabricated.

There, however, still remain a lot of work to be done and many issues to be solved. Firstly,
although the plastic formulation used as the lower level of the two-phase optimization produces
globally-optimal solutions, it is not appropriate for this type of problem, because the resulting topolo-
gies are not generally statically determinate and thus not fulfilling the compatibility (stress-strain)
relation. The possible future path might be semidefinite programming, which will simultaneously
solve the problem of the final truss stability. Also, the objective function will be probably predefined
to the minimization of compliance1.

The upper level of optimization does work as initially observed. However, it can be assumed
that the settings of simulated annealing can be further tweaked to speed up the optimization and pos-
sibly obtain preferable results. To further improve the performance the possibility of implementation
of another heuristic algorithm, such as tabu search or genetic algorithm, will be considered.
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