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Fields: real numbers R, complex numbers C, natural numbers N, binary
numbers B, integer numbers Z, real symmetric square matrices S

Superscript denotes the size, subscript additional constraints using
element-wise ordering <, <, >, > or matrix eigenvalue ordering <, =,
t’ >_

Scalar a € Z<o

Vector x € N™ with the i-th component x;. However, y; € B" is a
vector indexed by ¢

m Matrix Y € S, with the ¢-th row and j-th column component Y; ;

Positive semidefinite matrix Y € S{

= VxeR":xTYx >0
<> all eigenvalues are real and non-negative
o AVeER . VIV =Y
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Eigenvalue A € R>( and eigenvector x € R™ \ {0} of a matrix
Y € ST solve the eigenvalue equation

Yx = \x

Eigenvalues A\; < Ay < --- < )\, are the roots of the characteristic
polynomial

n

p(A) =Det (Y = A1) = [T (A
i=1
For )A,, eigenvector x, follows from solving (Y — A\JI)xe = 0
Column space/range space/image of a matrix Y is the span of the
column vectors
Im(Y) = {x e R" | Yx}
Nullspace/kernel of a matrix Y is
Ker(Y)={xe€R" | Yx =0}
Rank(Y) = Dim (Im(Y)), Nullity(Y) = Dim (Ker(Y))
Rank(Y) + Nullity(Y) =n
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m Function value

fx):R"—=R
m Gradient (steepest ascent direction, tangent)
9f(x)
le
2f(x)
Vi) =]
9f(x)
Oxp
m Hessian (local curvature)
62f(><) 9 f(x) 92 f(x)
Bx Ox10x2 e 0x10xT,
62f(X) 22f(x) 9% (x)
ng(x) _ Bx20T1 8z2 e Ox20xn,
Pf(x)  *f(x) 9% f(x)

OxnTy Oxn,0xy ox2
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Definition (convex set)
Aset Cisconvex if Vx,y € C,0 € [0,1] : 6x+ (1 — )y € C

Om' /v

m Which of the above sets are convex? Why?

Definition (cone)
AsetCisaconeifVxe C,0 >0:0x e C

m What is the relation of convex and conic sets? Are any of the above sets
cones?
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m Examples of convex sets:
Empty set {(}}, singleton {x}, the whole space R™
Hyperplanes {x | aTx = b}
Halfspaces {x | aTx < b}
Norm balls {x | |[|x — xo|| < r}
Norm cones {(x,1) | [|x — xo|| <t}
Polyhedra
{X | a]TX < bjaj € {L"‘am})c;rx = djaj = {Lap}}
m Positive semidefinite cone {X € S | X = 0}
m How to prove convexity of a set?
m Intersection of convex sets is a convex set
t
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Definition (Jensen’s inequality, zeroth-order)

Function f : R™ — R is convex if Dom(f) is a convex set and
Vx,y € Dom(f) and 6 € [0, 1] it holds that

JOx+(1—0)y) <O0f(x)+(1—0)f(y).

< first-order:
Dom(f) convex, Vx, y € Dom(f) : f(y) > f(x) + V[(x)"(y - )
m First-order Taylor approximation is a global underestimator
< second-order: Dom( f) convex, Vx € Dom(f) : V2f(x) =0

Y
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m Examples of convex functions:

» Affine and linear functions (a™x + ¢, aTx)

= Quadratic functions 3x"Px + q"x + r with P € S”, ¢ € R” and
r € R are convex iff P € Sy, based on second-order condition
Exponential functions e**, on R with a € R

Power functions z%, on R~ ¢ with a € (—o0,0] U [1, c0)

Norms

Max function max{xy,..., T, }
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Lemma

Assume an unconstrained optimization problem mingegn f(x) with f(x)
convex and differentiable. Then, any point X satisfying V f(X) = 0 is a
global minimizer.

Proof.

Using the first-order definition of convexity, we have

vx,y : f(y) 2 f(x) + V) (y — %)

Since V f(X) = 0, we receive

X,y : fy) =2 f(x),

concluding that X is indeed a global minimizer. O

m Strictly convex function — unique minimizer
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Definition (quasiconvex function, zeroth-order)

Function f : R"™ — R is quasiconvex if its domain and all sublevel sets
So = {x € Dom(f) | f(x) < a} for @ € R are convex

< first-order: Dom(f) convex and
vx,y € Dom(f) : f(y) < f(x) = Vf(x)"(y —x) <0
m When Vf(x) # 0, V f(x) defines a supporting hyperplane to the
sublevel set {y | f(y) < x}
m V f(x) = 0 does not imply global optimality
< second-order: Dom(f) convex and
Vx,y € Dom(f) :yTVf(x) =0=yTV2f(x)y >0

= In 1D, at any point with zero slope, the second-derivative is
non-negative
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m Formalization of optimization problems

m%{n f(x) objective/cost function
xeR™

st gi(x) <0,Vi e {1,...,m}, inequality constraints

hj(x)=0,Vj e {1,...,¢}, equality constraints

m Optimization variable x
When i € {0} and j € {0}, the problem is called unconstrained
m Domain of the opt. problem D = (., Dom(g;) N n§:1 Dom(h;)

m x € D is called a feasible point if it satisfies all the constraints,
infeasible otherwise

m Feasible set: the set of all feasible points

m Optimal value f* =inf{f(x) | g;(x) <0,i € {1,...,m},h;(x) =
0,7 € {1,...,£}}, f* = oo when infeasible and f* = —oo when
unbounded from below
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m x* is optimal point if it is feasible and f(x*) = f*

m Optimal set Xopy = {x | gi(x) < 0,i € {1,...,m},hj(x) =0,j €
{17"'76}7f(x) = f*}

m When X # {()}, the problem is solvable and the optimum value is
attained

m Feasible point x with f(x) < f* 4 ¢ is e-suboptimal

m Feasible point x is locally-optimal if 3r > 0 such that

f(x) =inf{f(z) | gi(z) <0,i € {1,...,m}, h;(z) =0,j €
{17"'76}7 ||X_Z|| ST}

m Inequality constraint is active when g;(x) = 0 and inactive otherwise

m Redundant constraint does not change the feasible set
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m The optimization problem
min f(x)
s.t. gi(x) <0,Vi € {1,...,m},
hj(X) =0,Vj € {1, R ,E},

is convex if f(x) and g;(x) are convex and and h;(x) is affine
m The feasible set is convex as it is an intersection of convex domains
m For f(x) quasiconvex instead of convex, the problem is called
quasiconvex
m All e-sublevel sets are convex = e-suboptimal sets are convex =
optimal set is convex
m Opt. problem is equivalent to
max f(x)
s.t. gi(x) <0,Vi € {1,...,m},
hj(X) =0,Vj € {1, R ,E},

with f(x) = — f(x) concave
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Lemma
Let P be a convex optimization problem. Then, any locally optimal point x*
is also globally optimal.

Proof.

Let x be feasible and locally optimal, i.e.,
f(%x) = inf {f(x) | x feasible, ||x — %X||2 < R}, where R > 0.

For % not globally optimal, there is an y such that f(y) < f(x) and
ly —xl[2> R.

Further, we set z = (1 — )% + Oy with § = ﬁ. Then,

|z — %2 = & < R and z is feasible by convexity of the feasible set.
By convexity of f(x), we also have

f(2) <(1=0)f(x) +0f(y) < f(%)

which contradicts the local optimality assumption. [
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Lemma
Let f(x) be differentiable and convex. Then, x* is optimal iff x* € D and
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m Standard form

min ¢Tx
x€Rn”

s.t. Ax<b
x>0

m Linear objective function and linear inequality constraints

m Q: How to write equality constraint in this form?

m Q: What is the shape of the feasible set?
/ / /
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m Standard form

min ¢'x

x€ER?
st. Ax<b
x>0

m Linear objective function and linear inequality constraints

m Q: How to write equality constraint in this form?

m Q: What is the shape of the feasible set? Convex polyhedron

m If bounded and feasible, optimum value attained at the boundary of D

m Vertices: basic feasible solutions, intersection of d inequality
constraints

m Simplex algorithm
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m Formulation

1 T
in —x"Px+q"
S g Prrax

s.t. Gx < h,
Ax=Db

where P € SgO,G € R™*™ and a € RP*"
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m Formulation

1 T
in —x'P
i X Px+a’
s.t. Gx < h,

Ax=Db

where P € SgO,G € R™*™ and a € RP*™
m We have Vf(x) = Px +qand V?f(x) =P
m P € S: convex problem
= P = 0: linear programming problem
m P indefinite: A"P-hard
m Addition of convex quadratic constraints

1
§XTPix + qZTx +7r; <0

—> quadratically constrained quadratic program
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m Formulation

min fTx
xER®
st |Aix +billz < cfx +d;
Fx=g

= With A; € R**", (A;x + by, c]x + d;) lies in the second-order cone
hlﬂ§k+1

m With A; = 0, reduction to linear programming

m With ¢; = 0, reduction to quadratically constrained quadratic
programming
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m Formulation

min ¢'x
xER™

n
s.t. Ag + Zl‘zAl =<0
=1

Ax=Db

m Reduction from linear programming with A; diagonal

m Reduction from second-order cone programming with

||Aix + bl”Q < C;»TX +d; <= <

(CZTX + dl)I AiX + bz ~0
(AiX + bi)T CZ-TX +d; ) —
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m Optimization problem P
p* = min f(x)

s.t.gi(x) <0, ie{l,...,m}
hi(x)=0, je{l,....0}

Augment the objective function with a weighted sum of constraint
functions

0
L(x,A,v) +ZAzgz )+ > vihy(x)
=1

Dom(L£) = D x R™ x R*
A: Lagrange multipliers associated with inequality constraints

v: Lagrange multipliers associated with equality constraints

v and A are the dual variables of the problem
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Define a Lagrangian dual function

dA\v) = :lgg) L(x, A, V)

m 4
Jnf {F0) Y Nigi (%) + Y vih; (%)
i=1 j=1

When d(A, v) is unbounded below in x, we extend its value to —oo

d(\, v) is always convex, even when the original problem P is not
For any A > 0 and v, we have d(\,v) < p*
m Let x be feasible to P and let A > 0

m Then, wehavezz 1 Aigi(x )+Z]  vihi(x) <0
= Thus,

LA v) = f(R) + 7 Nigi(%) + 5 v3hs (%) <
m Finally, d(A\,v) = infxep L(x, A, v) < L(X, A, v) < f(

m If d(X,v) > —oo, the pair (A, v) is called dual feasible
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m Consider linear program in the equality form

min ¢'x

xER"

st.Ax=b
x>0
m The Lagrangian evaluates as
L(x,\v)=c'x - ATx+vT (Ax —b)
= v+ (c - A+ ATV)TX
m Dual function
d\v) = igf L(x,Av)

= ir)lcf [—I/Tb + (C - A+ ATV)T x}

—bT™y ifc—A+ATvr=0

—oo  otherwise

d\v) = {
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m We have that d(A, v) < p* for any A > 0: what is the best lower
bound?

Dual optimization problem

d*= max dA\v)
AER™ vER?

st.A>0

Convex optimization problem: why?

Example: linear programming

max —-bTy
AER™, vcR?

st.c=A+ATv=0

In general, we have weak duality, i.e., d* < p*

D320PT 29/33
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m Strong duality d* = p* does not hold in general
m It usually holds for convex problems

min f(x)

m Conditions under which strong duality holds: constraint qualifications

m Slater’s condition: there exists X strictly feasible, that is
x € Relint(D), or

xe{x|Vie{l,...,m}:g(x)<0,Ax = b}
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m f(x) — d(\, v) is a certificate of e-suboptimality
m Let x*, A*, and v* be primal and dual optimal and let d* = p*. Then,

x€eR”

m £
F(x*) = dA*,v*) = inf f(x)+2)\fgi(x)+21/;‘hj(x)

m 4
3 Xl + Sk () < f(x)
i=1 =1

<0

m Consequently,

m Vie{l,...,m}: Afg;(x*) = 0 (complementary slackness)
m x* is a minimizer of £(x, \*, v*)
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m Assume that g; and h; are differentiable and let x*, A* and v* be
optimal primal and dual points with zero optimality gap, we have

)+ Z ArVgi(x™) + Z v;Vh;(x") = 0 (stationarity of £)

Vi € {1,...,m} : gi(x*) < 0 (primal feas.)
Vje{l,...,£} : hj(x*) = 0 (primal feas.)
A* > 0 (dual feas.)
Vie{l,...,m}: Afg;(x*) = 0 (compl. slackness)

m For primal convex, KKT conditions are sufficient for the points to be
primal and dual optimal

m For convex problems satisfying Slater constraint qualification, KKT are
sufficient and necessary conditions of optimality
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