Brief introduction to mathematical optimization

Department of Mechanics
Faculty of Civil Engineering
Czech Technical University in Prague

Marek Tyburec

- Notation

■ Convex sets and convex functions
■ Convex optimization problems

- Formalism
- Optimality conditions
- Problem classes
- Duality in non-linear optimization
- Lagrangian duality
- Weak and strong duality
- Optimality conditions
\emptyset Algorithms ${ }^{1}$

[^0]
Preliminaries

■ Fields: real numbers \mathbb{R}, complex numbers \mathbb{C}, natural numbers \mathbb{N}, binary numbers \mathbb{B}, integer numbers \mathbb{Z}, real symmetric square matrices \mathbb{S}

- Superscript denotes the size, subscript additional constraints using element-wise ordering $<, \leq, \geq,>$ or matrix eigenvalue ordering \prec, \preceq, \succeq, \succ
- Scalar $a \in \mathbb{Z}_{\leq 0}$

■ Vector $\mathbf{x} \in \mathbb{N}^{n}$ with the i-th component x_{i}. However, $\mathbf{y}_{i} \in \mathbb{B}^{n}$ is a vector indexed by i

- Matrix $\mathbf{Y} \in \mathbb{S}_{\succeq 0}^{n}$ with the i-th row and j-th column component $Y_{i, j}$
- Positive semidefinite matrix $\mathbf{Y} \in \mathbb{S}_{\succeq 0}^{n}$
$\Leftrightarrow \forall \mathbf{x} \in \mathbb{R}^{n}: \mathbf{x}^{\mathrm{T}} \mathbf{Y} \mathbf{x} \geq 0$
\Leftrightarrow all eigenvalues are real and non-negative
$\Leftrightarrow \exists \mathbf{V} \in \mathbb{R}^{n \times n}: \mathbf{V}^{\mathrm{T}} \mathbf{V}=\mathbf{Y}$
- Eigenvalue $\lambda \in \mathbb{R}_{\geq 0}$ and eigenvector $\mathbf{x} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}$ of a matrix $\mathbf{Y} \in \mathbb{S}_{\succeq 0}^{n}$ solve the eigenvalue equation

$$
\mathbf{Y} \mathbf{x}=\lambda \mathbf{x}
$$

■ Eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ are the roots of the characteristic polynomial

$$
p(\lambda)=\operatorname{Det}(\mathbf{Y}-\lambda \mathbf{I})=\prod_{i=1}^{n}\left(\lambda-\lambda_{i}\right)=0
$$

■ For λ_{\bullet}, eigenvector \mathbf{x}_{\bullet} follows from solving $\left(\mathbf{Y}-\lambda_{\mathbf{\bullet}} \mathbf{I}\right) \mathbf{x}_{\bullet}=\mathbf{0}$

- Column space/range space/image of a matrix \mathbf{Y} is the span of the column vectors

$$
\operatorname{Im}(\mathbf{Y})=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{Y} \mathbf{x}\right\}
$$

- Nullspace/kernel of a matrix \mathbf{Y} is

$$
\operatorname{Ker}(\mathbf{Y})=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{Y} \mathbf{x}=\mathbf{0}\right\}
$$

- $\operatorname{Rank}(\mathbf{Y})=\operatorname{Dim}(\operatorname{Im}(\mathbf{Y})), \operatorname{Nullity}(\mathbf{Y})=\operatorname{Dim}(\operatorname{Ker}(\mathbf{Y}))$

$$
\operatorname{Rank}(\mathbf{Y})+\operatorname{Nullity}(\mathbf{Y})=n
$$

- Function value

$$
f(\mathbf{x}): \mathbb{R}^{n} \mapsto \mathbb{R}
$$

- Gradient (steepest ascent direction, tangent)

$$
\nabla f(\mathbf{x})=\left(\begin{array}{c}
\frac{\partial f(\mathbf{x})}{\partial x_{1}} \\
\frac{\partial f(\mathbf{x})}{\partial x_{2}} \\
\vdots \\
\frac{\partial f(\mathbf{x})}{\partial x_{n}}
\end{array}\right)
$$

- Hessian (local curvature)

$$
\nabla^{2} f(\mathbf{x})=\left(\begin{array}{cccc}
\frac{\partial^{2} f(\mathbf{x})}{\partial x_{1}^{2}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{2}} & \ldots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f(\mathbf{x})}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{2}^{2}} & \ldots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} x_{1}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} \partial x_{2}} & \ldots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n}^{2}}
\end{array}\right)
$$

Convex sets

Definition (convex set)

A set C is convex if $\forall \mathbf{x}, \mathbf{y} \in C, \theta \in[0,1]: \theta \mathbf{x}+(1-\theta) \mathbf{y} \in C$

- Which of the above sets are convex? Why?

Definition (cone)

A set C is a cone if $\forall \mathbf{x} \in C, \theta \geq 0: \theta \mathbf{x} \in C$

- What is the relation of convex and conic sets? Are any of the above sets cones?

Definition (convex set)

A set C is convex if $\forall \mathbf{x}, \mathbf{y} \in C, \theta \in[0,1]: \theta \mathbf{x}+(1-\theta) \mathbf{y} \in C$

■ Which of the above sets are convex? Why?

Definition (cone)

A set C is a cone if $\forall \mathbf{x} \in C, \theta \geq 0: \theta \mathbf{x} \in C$

- What is the relation of convex and conic sets? Are any of the above sets cones?

■ Examples of convex sets:

- Empty set $\{\emptyset\}$, singleton $\{\mathbf{x}\}$, the whole space \mathbb{R}^{n}
- Hyperplanes $\left\{\mathbf{x} \mid \mathbf{a}^{\mathrm{T}} \mathbf{x}=b\right\}$
- Halfspaces $\left\{\mathbf{x} \mid \mathbf{a}^{\mathrm{T}} \mathbf{x} \leq b\right\}$
- Norm balls $\left\{\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{0}\right\| \leq r\right\}$
- Norm cones $\left\{(\mathbf{x}, t) \mid\left\|\mathbf{x}-\mathbf{x}_{0}\right\| \leq t\right\}$
- Polyhedra

$$
\left\{\mathbf{x} \mid \mathbf{a}_{j}^{\mathrm{T}} \mathbf{x} \leq b_{j}, j \in\{1, \ldots, m\}, \mathbf{c}_{j}^{\mathrm{T}} \mathbf{x}=d_{j}, j=\{1, \ldots, p\}\right\}
$$

- Positive semidefinite cone $\left\{\mathbf{X} \in \mathbb{S}^{n} \mid \mathbf{X} \succeq 0\right\}$
- How to prove convexity of a set?
- Intersection of convex sets is a convex set

Convex functions

Definition (Jensen's inequality, zeroth-order)

Function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ is convex if $\operatorname{Dom}(f)$ is a convex set and $\forall \mathbf{x}, \mathbf{y} \in \operatorname{Dom}(f)$ and $\theta \in[0,1]$ it holds that

$$
f(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \leq \theta f(\mathbf{x})+(1-\theta) f(\mathbf{y})
$$

\Leftrightarrow first-order:
$\operatorname{Dom}(f)$ convex, $\forall \mathbf{x}, \mathbf{y} \in \operatorname{Dom}(f): f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{\mathrm{T}}(\mathbf{y}-\mathbf{x})$
■ First-order Taylor approximation is a global underestimator \Leftrightarrow second-order: $\operatorname{Dom}(f)$ convex, $\forall \mathbf{x} \in \operatorname{Dom}(f): \nabla^{2} f(\mathbf{x}) \succeq 0$

Definition (Jensen's inequality, zeroth-order)

Function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ is convex if $\operatorname{Dom}(f)$ is a convex set and $\forall \mathbf{x}, \mathbf{y} \in \operatorname{Dom}(f)$ and $\theta \in[0,1]$ it holds that

$$
f(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \leq \theta f(\mathrm{x})+(1-\theta) f(\mathbf{y}) .
$$

\Leftrightarrow first-order:
$\operatorname{Dom}(f)$ convex, $\forall \mathbf{x}, \mathbf{y} \in \operatorname{Dom}(f): f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{\mathrm{T}}(\mathbf{y}-\mathbf{x})$
■ First-order Taylor approximation is a global underestimator \Leftrightarrow second-order: $\operatorname{Dom}(f)$ convex, $\forall \mathbf{x} \in \operatorname{Dom}(f): \nabla^{2} f(\mathbf{x}) \succeq 0$

- Examples of convex functions:
- Affine and linear functions ($\mathbf{a}^{\mathrm{T}} \mathbf{x}+c, \mathbf{a}^{\mathrm{T}} \mathbf{x}$)
- Quadratic functions $\frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{P} \mathbf{x}+\mathbf{q}^{\mathrm{T}} \mathbf{x}+r$ with $\mathbf{P} \in \mathbb{S}^{n}, q \in \mathbb{R}^{n}$ and $r \in \mathbb{R}$ are convex iff $\mathbf{P} \in \mathbb{S}_{\succeq 0}$, based on second-order condition
- Exponential functions $e^{a x}$, on \mathbb{R} with $a \in \mathbb{R}$
- Power functions x^{a}, on $\mathbb{R}_{>0}$ with $a \in(-\infty, 0] \cup[1, \infty)$
- Norms
- Max function $\max \left\{x_{1}, \ldots, x_{n}\right\}$

Lemma

Assume an unconstrained optimization problem $\min _{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x})$ with $f(\mathbf{x})$ convex and differentiable. Then, any point $\overline{\mathbf{x}}$ satisfying $\boldsymbol{\nabla} f(\overline{\mathbf{x}})=\mathbf{0}$ is a global minimizer.

Proof.

Using the first-order definition of convexity, we have

$$
\forall \mathbf{x}, \mathbf{y}: f(\mathbf{y}) \geq f(\mathbf{x})+\boldsymbol{\nabla} f(\overline{\mathbf{x}})^{\mathrm{T}}(\mathbf{y}-\overline{\mathbf{x}})
$$

Since $\boldsymbol{\nabla} f(\overline{\mathbf{x}})=0$, we receive

$$
\forall \mathbf{x}, \mathbf{y}: f(\mathbf{y}) \geq f(\mathbf{x})
$$

concluding that $\overline{\mathbf{x}}$ is indeed a global minimizer.

- Strictly convex function \longrightarrow unique minimizer

Definition (quasiconvex function, zeroth-order)

Function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ is quasiconvex if its domain and all sublevel sets
$S_{\alpha}=\{\mathbf{x} \in \operatorname{Dom}(f) \mid f(\mathbf{x}) \leq \alpha\}$ for $\alpha \in \mathbb{R}$ are convex
\Leftrightarrow first-order: $\operatorname{Dom}(f)$ convex and
$\forall \mathbf{x}, \mathbf{y} \in \operatorname{Dom}(f): f(\mathbf{y}) \leq f(\mathbf{x}) \Rightarrow \nabla f(\mathbf{x})^{\mathrm{T}}(\mathbf{y}-\mathbf{x}) \leq 0$

- When $\boldsymbol{\nabla} f(\mathbf{x}) \neq \mathbf{0}, \boldsymbol{\nabla} f(\mathbf{x})$ defines a supporting hyperplane to the sublevel set $\{\mathbf{y} \mid f(\mathbf{y}) \leq \mathbf{x}\}$
- $\boldsymbol{\nabla} f(\mathbf{x})=\mathbf{0}$ does not imply global optimality
\Leftrightarrow second-order: $\operatorname{Dom}(f)$ convex and $\forall \mathbf{x}, \mathbf{y} \in \operatorname{Dom}(f): \mathbf{y}^{\mathrm{T}} \boldsymbol{\nabla} f(\mathbf{x})=0 \Rightarrow \mathbf{y}^{\mathrm{T}} \nabla^{2} f(\mathbf{x}) \mathbf{y} \geq 0$
- In 1D, at any point with zero slope, the second-derivative is non-negative

Convex optimization problems

- Formalization of optimization problems

$$
\begin{array}{rl}
\min _{\mathbf{x} \in \mathbb{R}^{n}} & f(\mathbf{x}) \\
\text { s.t. } & g_{i}(\mathbf{x}) \leq 0, \forall i \in\{1, \ldots, m\} \\
& h_{j}(\mathbf{x})=0, \forall j \in\{1, \ldots, \ell\}
\end{array}
$$

objective/cost function
inequality constraints equality constraints

- Optimization variable \mathbf{x}

■ When $i \in\{\emptyset\}$ and $j \in\{\emptyset\}$, the problem is called unconstrained
■ Domain of the opt. problem $\mathcal{D}=\bigcap_{i=1}^{m} \operatorname{Dom}\left(g_{i}\right) \cap \bigcap_{j=1}^{\ell} \operatorname{Dom}\left(h_{j}\right)$
$\square \mathbf{x} \in \mathcal{D}$ is called a feasible point if it satisfies all the constraints, infeasible otherwise

- Feasible set: the set of all feasible points
- Optimal value $f^{*}=\inf \left\{f(\mathbf{x}) \mid g_{i}(\mathbf{x}) \leq 0, i \in\{1, \ldots, m\}, h_{j}(\mathbf{x})=\right.$ $0, j \in\{1, \ldots, \ell\}\}, f^{*}=\infty$ when infeasible and $f^{*}=-\infty$ when unbounded from below
- \mathbf{x}^{*} is optimal point if it is feasible and $f\left(\mathbf{x}^{*}\right)=f^{*}$

■ Optimal set $\mathcal{X}_{\mathrm{opt}}=\left\{\mathbf{x} \mid g_{i}(\mathbf{x}) \leq 0, i \in\{1, \ldots, m\}, h_{j}(\mathbf{x})=0, j \in\right.$ $\left.\{1, \ldots, \ell\}, f(\mathbf{x})=f^{*}\right\}$

- When $\mathcal{X} \neq\{\emptyset\}$, the problem is solvable and the optimum value is attained
- Feasible point \mathbf{x} with $f(\mathbf{x}) \leq f^{*}+\varepsilon$ is ε-suboptimal
- Feasible point \mathbf{x} is locally-optimal if $\exists r>0$ such that $f(\mathbf{x})=\inf \left\{f(\mathbf{z}) \mid g_{i}(\mathbf{z}) \leq 0, i \in\{1, \ldots, m\}, h_{j}(\mathbf{z})=0, j \in\right.$ $\{1, \ldots, \ell\},\|\mathbf{x}-\mathbf{z}\| \leq r\}$
- Inequality constraint is active when $g_{i}(\mathbf{x})=0$ and inactive otherwise
- Redundant constraint does not change the feasible set
- The optimization problem

$$
\begin{array}{rl}
\min _{\mathbf{x} \in \mathbb{R}^{n}} & f(\mathbf{x}) \\
\text { s.t. } & g_{i}(\mathbf{x}) \leq 0, \forall i \in\{1, \ldots, m\}, \\
& h_{j}(\mathbf{x})=0, \forall j \in\{1, \ldots, \ell\},
\end{array}
$$

is convex if $f(\mathbf{x})$ and $g_{i}(\mathbf{x})$ are convex and and $h_{j}(\mathbf{x})$ is affine

- The feasible set is convex as it is an intersection of convex domains
- For $f(\mathbf{x})$ quasiconvex instead of convex, the problem is called quasiconvex
- All ε-sublevel sets are convex $\Rightarrow \varepsilon$-suboptimal sets are convex \Rightarrow optimal set is convex
- Opt. problem is equivalent to

$$
\begin{aligned}
\max _{\mathbf{x} \in \mathbb{R}^{n}} & \hat{f}(\mathbf{x}) \\
\text { s.t. } & g_{i}(\mathbf{x}) \leq 0, \forall i \in\{1, \ldots, m\}, \\
& h_{j}(\mathbf{x})=0, \forall j \in\{1, \ldots, \ell\},
\end{aligned}
$$

with $\hat{f}(\mathbf{x})=-f(\mathbf{x})$ concave

Lemma

Let \mathcal{P} be a convex optimization problem. Then, any locally optimal point \mathbf{x}^{*} is also globally optimal.

Proof.

Let $\hat{\mathbf{x}}$ be feasible and locally optimal, i.e.,

$$
f(\hat{\mathbf{x}})=\inf \left\{f(\mathbf{x}) \mid \mathbf{x} \text { feasible, }\|\mathbf{x}-\hat{\mathbf{x}}\|_{2} \leq R\right\}, \text { where } R>0 .
$$

For $\hat{\mathbf{x}}$ not globally optimal, there is an \mathbf{y} such that $f(\mathbf{y})<f(\hat{\mathbf{x}})$ and $\|\mathbf{y}-\hat{\mathbf{x}}\|_{2}>R$.
Further, we set $\mathbf{z}=(1-\theta) \hat{\mathbf{x}}+\theta \mathbf{y}$ with $\theta=\frac{R}{2\|\mathbf{y}-\hat{\mathbf{x}}\|_{2}}$. Then, $\|\mathbf{z}-\hat{\mathbf{x}}\|_{2}=\frac{R}{2}<R$ and \mathbf{z} is feasible by convexity of the feasible set. By convexity of $f(\mathbf{x})$, we also have

$$
f(\mathbf{z}) \leq(1-\theta) f(\hat{\mathbf{x}})+\theta f(\mathbf{y})<f(\hat{\mathbf{x}})
$$

which contradicts the local optimality assumption.

Lemma

Let $f(\mathbf{x})$ be differentiable and convex. Then, x^{*} is optimal iff $\mathrm{x}^{*} \in \mathcal{D}$ and

$$
\forall \mathbf{y} \in \mathcal{D}: \nabla f\left(\mathbf{x}^{*}\right)^{\mathrm{T}}\left(\mathbf{y}-\mathbf{x}^{*}\right) \geq 0
$$

- Standard form

$$
\begin{gathered}
\min _{\mathbf{x} \in \mathbb{R}^{n}} \mathbf{c}^{\mathrm{T}} \mathbf{x} \\
\text { s.t. } \mathbf{A x} \leq \mathbf{b} \\
\mathbf{x} \geq \mathbf{0}
\end{gathered}
$$

■ Linear objective function and linear inequality constraints

- Q: How to write equality constraint in this form?
- Q: What is the shape of the feasible set?

- Standard form

$$
\begin{aligned}
\min _{\mathbf{x} \in \mathbb{R}^{n}} & \mathbf{c}^{\mathrm{T}} \mathbf{x} \\
\text { s.t. } & \mathbf{A x} \leq \mathbf{b} \\
& \mathbf{x} \geq \mathbf{0}
\end{aligned}
$$

■ Linear objective function and linear inequality constraints

- Q: How to write equality constraint in this form?

■ Q: What is the shape of the feasible set? Convex polyhedron
■ If bounded and feasible, optimum value attained at the boundary of \mathcal{D}
■ Vertices: basic feasible solutions, intersection of d inequality constraints

- Simplex algorithm
- Formulation

$$
\begin{aligned}
& \min _{\mathbf{x} \in \mathbb{R}^{n}} \frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{P} \mathbf{x}+\mathbf{q}^{\mathrm{T}} \mathbf{x} \\
& \text { s.t. } \mathbf{G} \mathbf{x} \leq \mathbf{h}, \\
& \mathbf{A} \mathbf{x}=\mathbf{b}
\end{aligned}
$$

where $\mathbf{P} \in \mathbb{S}_{\succeq 0}^{n}, \mathbf{G} \in \mathbb{R}^{m \times n}$ and $\mathbf{a} \in \mathbb{R}^{p \times n}$

- Formulation

$$
\begin{aligned}
& \min _{\mathbf{x} \in \mathbb{R}^{n}} \frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{P} \mathbf{x}+\mathbf{q}^{\mathrm{T}} \mathbf{x} \\
& \text { s.t. } \mathbf{G} \mathbf{x} \leq \mathbf{h}, \\
& \mathbf{A} \mathbf{x}=\mathbf{b}
\end{aligned}
$$

where $\mathbf{P} \in \mathbb{S}_{\succeq 0}^{n}, \mathbf{G} \in \mathbb{R}^{m \times n}$ and $\mathbf{a} \in \mathbb{R}^{p \times n}$

- We have $\nabla f(\mathbf{x})=\mathbf{P x}+\mathbf{q}$ and $\nabla^{2} f(\mathbf{x})=\mathbf{P}$
- $\mathbf{P} \in \mathbb{S}_{\succeq 0}^{n}$: convex problem
- $\mathbf{P}=\mathbf{0}$. linear programming problem
- \mathbf{P} indefinite: $\mathcal{N} \mathcal{P}$-hard
- Addition of convex quadratic constraints

$$
\frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{P}_{i} \mathbf{x}+\mathbf{q}_{i}^{\mathrm{T}} \mathbf{x}+r_{i} \leq 0
$$

\Longrightarrow quadratically constrained quadratic program

- Formulation

$$
\left.\begin{array}{l}
\min _{\mathbf{x} \in \mathbb{R}^{n}} \mathbf{f}^{\mathrm{T}} \mathbf{x} \\
\text { s.t. }
\end{array} \quad\left\|\mathbf{A}_{i} \mathbf{x}+\mathbf{b}_{i}\right\|_{2} \leq \mathbf{c}_{i}^{\mathrm{T}} \mathbf{x}+d_{i}\right)
$$

- With $\mathbf{A}_{i} \in \mathbb{R}^{k \times n},\left(\mathbf{A}_{i} \mathbf{x}+\mathbf{b}_{i}, \mathbf{c}_{i}^{T} \mathbf{x}+d_{i}\right)$ lies in the second-order cone in \mathbb{R}^{k+1}
■ With $\mathbf{A}_{i}=\mathbf{0}$, reduction to linear programming
■ With $\mathbf{c}_{i}=\mathbf{0}$, reduction to quadratically constrained quadratic programming
- Formulation

$$
\begin{aligned}
& \min _{\mathbf{x} \in \mathbb{R}^{n}} \mathbf{c}^{\mathrm{T}} \mathbf{x} \\
& \text { s.t. } \mathbf{A}_{0}+\sum_{i=1}^{n} x_{i} \mathbf{A}_{i} \preceq 0 \\
& \mathbf{A} \mathbf{x}=\mathbf{b}
\end{aligned}
$$

- Reduction from linear programming with \mathbf{A}_{i} diagonal
- Reduction from second-order cone programming with

$$
\left\|\mathbf{A}_{i} \mathbf{x}+\mathbf{b}_{i}\right\|_{2} \leq \mathbf{c}_{i}^{\mathrm{T}} \mathbf{x}+d_{i} \Longleftrightarrow\left(\begin{array}{cc}
\left(\mathbf{c}_{i}^{\mathrm{T}} \mathbf{x}+d_{i}\right) \mathbf{I} & \mathbf{A}_{i} \mathbf{x}+\mathbf{b}_{i} \\
\left(\mathbf{A}_{i} \mathbf{x}+\mathbf{b}_{i}\right)^{\mathrm{T}} & \mathbf{c}_{i}^{\mathrm{T}} \mathbf{x}+d_{i}
\end{array}\right) \succeq 0
$$

Duality

- Optimization problem \mathcal{P}

$$
\begin{array}{rl}
p^{*}=\min _{\mathbf{x} \in \mathbb{R}^{n}} & f(\mathbf{x}) \\
\text { s.t. } & g_{i}(\mathbf{x}) \leq 0, \quad i \in\{1, \ldots, m\} \\
& h_{j}(\mathbf{x})=0, \quad j \in\{1, \ldots, \ell\}
\end{array}
$$

- Augment the objective function with a weighted sum of constraint functions

$$
\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})=f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})+\sum_{j=1}^{\ell} \nu_{j} h_{j}(\mathbf{x})
$$

- $\operatorname{Dom}(\mathcal{L})=\mathcal{D} \times \mathbb{R}^{m} \times \mathbb{R}^{\ell}$
- $\boldsymbol{\lambda}$: Lagrange multipliers associated with inequality constraints

■ $\boldsymbol{\nu}$: Lagrange multipliers associated with equality constraints
$\square \boldsymbol{\nu}$ and $\boldsymbol{\lambda}$ are the dual variables of the problem

- Define a Lagrangian dual function

$$
\begin{aligned}
d(\boldsymbol{\lambda}, \boldsymbol{\nu}) & =\inf _{\mathbf{x} \in \mathcal{D}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \\
& =\inf _{\mathbf{x} \in \mathcal{D}}\left(f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})+\sum_{j=1}^{\ell} \nu_{j} h_{j}(\mathbf{x})\right)
\end{aligned}
$$

- When $d(\boldsymbol{\lambda}, \boldsymbol{\nu})$ is unbounded below in \mathbf{x}, we extend its value to $-\infty$
- $d(\boldsymbol{\lambda}, \boldsymbol{\nu})$ is always convex, even when the original problem \mathcal{P} is not

■ For any $\boldsymbol{\lambda} \geq \mathbf{0}$ and $\boldsymbol{\nu}$, we have $d(\boldsymbol{\lambda}, \boldsymbol{\nu}) \leq p^{*}$

- Let $\tilde{\mathbf{x}}$ be feasible to \mathcal{P} and let $\boldsymbol{\lambda} \geq \mathbf{0}$
- Then, we have $\sum_{i=1}^{m} \lambda_{i} g_{i}(\tilde{\mathbf{x}})+\sum_{j=1}^{\ell} \nu_{j} h_{j}(\tilde{\mathbf{x}}) \leq 0$
- Thus,

$$
\mathcal{L}(\tilde{\mathbf{x}}, \boldsymbol{\lambda}, \boldsymbol{\nu})=f(\tilde{\mathbf{x}})+\sum_{i=1}^{m} \lambda_{i} g_{i}(\tilde{\mathbf{x}})+\sum_{j=1}^{\ell} \nu_{j} h_{j}(\tilde{\mathbf{x}}) \leq f(\tilde{\mathbf{x}})
$$

■ Finally, $d(\boldsymbol{\lambda}, \boldsymbol{\nu})=\inf _{\mathbf{x} \in \mathcal{D}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \leq \mathcal{L}(\tilde{\mathbf{x}}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \leq f(\tilde{\mathbf{x}})$
■ If $d(\boldsymbol{\lambda}, \boldsymbol{\nu})>-\infty$, the pair $(\boldsymbol{\lambda}, \boldsymbol{\nu})$ is called dual feasible

- Consider linear program in the equality form

$$
\begin{aligned}
\min _{\mathbf{x} \in \mathbb{R}^{n}} & \mathbf{c}^{\mathrm{T}} \mathbf{x} \\
\text { s.t. } & \mathbf{A x}=\mathbf{b} \\
& \mathbf{x} \geq \mathbf{0}
\end{aligned}
$$

- The Lagrangian evaluates as

$$
\begin{aligned}
\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) & =\mathbf{c}^{\mathrm{T}} \mathbf{x}-\boldsymbol{\lambda}^{\mathrm{T}} \mathbf{x}+\boldsymbol{\nu}^{\mathrm{T}}(\mathbf{A} \mathbf{x}-\mathbf{b}) \\
& =-\boldsymbol{\nu}^{\mathrm{T}} \mathbf{b}+\left(\mathbf{c}-\boldsymbol{\lambda}+\mathbf{A}^{\mathrm{T}} \boldsymbol{\nu}\right)^{\mathrm{T}} \mathbf{x}
\end{aligned}
$$

■ Dual function

$$
\begin{aligned}
d(\boldsymbol{\lambda}, \boldsymbol{\nu}) & =\inf _{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \\
& =\inf _{\mathbf{x}}\left[-\boldsymbol{\nu}^{\mathrm{T}} \mathbf{b}+\left(\mathbf{c}-\boldsymbol{\lambda}+\mathbf{A}^{\mathrm{T}} \boldsymbol{\nu}\right)^{\mathrm{T}} \mathbf{x}\right] \\
d(\boldsymbol{\lambda}, \boldsymbol{\nu}) & = \begin{cases}-\mathbf{b}^{\mathrm{T}} \boldsymbol{\nu} & \text { if } \mathbf{c}-\boldsymbol{\lambda}+\mathbf{A}^{\mathrm{T}} \boldsymbol{\nu}=\mathbf{0} \\
-\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

■ We have that $d(\boldsymbol{\lambda}, \boldsymbol{\nu}) \leq p^{*}$ for any $\boldsymbol{\lambda} \geq \mathbf{0}$: what is the best lower bound?

- Dual optimization problem

$$
\begin{array}{r}
d^{*}=\max _{\boldsymbol{\lambda} \in \mathbb{R}^{m}, \boldsymbol{\nu} \in \mathbb{R}^{\ell}} d(\boldsymbol{\lambda}, \boldsymbol{\nu}) \\
\text { s.t. } \boldsymbol{\lambda} \geq \mathbf{0}
\end{array}
$$

- Convex optimization problem: why?

■ Example: linear programming

$$
\begin{aligned}
\max _{\boldsymbol{\lambda} \in \mathbb{R}^{m}, \boldsymbol{\nu} \in \mathbb{R}^{\ell}}-\mathbf{b}^{\mathrm{T}} \boldsymbol{\nu} \\
\quad \text { s.t. } \mathbf{c}-\boldsymbol{\lambda}+\mathbf{A}^{\mathrm{T}} \boldsymbol{\nu}=\mathbf{0}
\end{aligned}
$$

■ In general, we have weak duality, i.e., $d^{*} \leq p^{*}$

■ Strong duality $d^{*}=p^{*}$ does not hold in general
■ It usually holds for convex problems

$$
\begin{array}{rl}
\min _{\mathbf{x} \in \mathbb{R}^{n}} & f(\mathbf{x}) \\
\text { s.t. } & g_{i}(\mathbf{x}) \leq 0, i \in 1, \ldots, m \\
& \mathbf{A x}=\mathbf{b}
\end{array}
$$

■ Conditions under which strong duality holds: constraint qualifications
■ Slater's condition: there exists $\tilde{\mathbf{x}}$ strictly feasible, that is $\tilde{\mathbf{x}} \in \operatorname{Relint}(\mathcal{D})$, or

$$
\tilde{\mathbf{x}} \in\left\{\mathbf{x} \mid \forall i \in\{1, \ldots, m\}: g_{i}(\mathbf{x})<0, \mathbf{A} \mathbf{x}=\mathbf{b}\right\}
$$

- $f(\mathbf{x})-d(\boldsymbol{\lambda}, \boldsymbol{\nu})$ is a certificate of ε-suboptimality

■ Let $\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}$, and $\boldsymbol{\nu}^{*}$ be primal and dual optimal and let $d^{*}=p^{*}$. Then,

$$
\begin{aligned}
f\left(\mathbf{x}^{*}\right) & =d\left(\boldsymbol{\lambda}^{*}, \boldsymbol{\nu}^{*}\right)=\inf _{\mathbf{x} \in \mathbb{R}^{n}}\left(f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i}^{*} g_{i}(\mathbf{x})+\sum_{j=1}^{\ell} \nu_{j}^{*} h_{j}(\mathbf{x})\right) \\
& \leq f\left(\mathbf{x}^{*}\right)+\underbrace{\sum_{i=1}^{m} \lambda_{i}^{*} g_{i}\left(\mathbf{x}^{*}\right)+\sum_{j=1}^{\ell} \nu_{j}^{*} h_{j}^{*}\left(\mathbf{x}^{*}\right)}_{\leq 0} \leq f\left(\mathbf{x}^{*}\right)
\end{aligned}
$$

■ Consequently,
■ $\forall i \in\{1, \ldots, m\}: \lambda_{i}^{*} g_{i}\left(\mathbf{x}^{*}\right)=0$ (complementary slackness)
$\square \mathbf{x}^{*}$ is a minimizer of $\mathcal{L}\left(\mathbf{x}, \boldsymbol{\lambda}^{*}, \boldsymbol{\nu}^{*}\right)$

- Assume that g_{i} and h_{i} are differentiable and let $\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}$ and $\boldsymbol{\nu}^{*}$ be optimal primal and dual points with zero optimality gap, we have

$$
\begin{aligned}
\nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} \nabla g_{i}\left(\mathbf{x}^{*}\right)+\sum_{j=1}^{\ell} \nu_{j}^{*} \nabla h_{j}\left(\mathbf{x}^{*}\right) & =\mathbf{0} \text { (stationarity of } \mathcal{L} \text {) } \\
\forall i \in\{1, \ldots, m\}: g_{i}\left(\mathbf{x}^{*}\right) & \leq 0 \text { (primal feas.) } \\
\forall j \in\{1, \ldots, \ell\}: h_{j}\left(\mathbf{x}^{*}\right) & =0 \text { (primal feas.) } \\
\boldsymbol{\lambda}^{*} & \geq \mathbf{0} \text { (dual feas.) } \\
\forall i \in\{1, \ldots, m\}: \lambda_{i}^{*} g_{i}\left(\mathbf{x}^{*}\right) & =0 \text { (compl. slackness) }
\end{aligned}
$$

- For primal convex, KKT conditions are sufficient for the points to be primal and dual optimal
- For convex problems satisfying Slater constraint qualification, KKT are sufficient and necessary conditions of optimality

■ S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004, doi: 10.1017/cbo9780511804441

- A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization. Society for Industrial and Applied Mathematics, 2001, doi: 10.1137/1.9780898718829

[^0]: ${ }^{1}$ J. Nocedal and S. Wright, Numerical Optimization, Springer Series in Operations Research and Financial Engineering. Springer, 2 edition, 2006, doi: 10.1007/978-0-387-40065-5

