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Fields: real numbers R, complex numbers C, natural numbers N, binary
numbers B, integer numbers Z, real symmetric square matrices S
Superscript denotes the size, subscript additional constraints using
element-wise ordering <, ≤, ≥, > or matrix eigenvalue ordering ≺, ⪯,
⪰, ≻
Scalar a ∈ Z≤0

Vector x ∈ Nn with the i-th component xi. However, yi ∈ Bn is a
vector indexed by i

Matrix Y ∈ Sn⪰0 with the i-th row and j-th column component Yi,j

Positive semidefinite matrix Y ∈ Sn⪰0

⇔ ∀x ∈ Rn : xTYx ≥ 0
⇔ all eigenvalues are real and non-negative
⇔ ∃V ∈ Rn×n : VTV = Y
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Eigenvalue λ ∈ R≥0 and eigenvector x ∈ Rn \ {0} of a matrix
Y ∈ Sn⪰0 solve the eigenvalue equation

Yx = λx

Eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn are the roots of the characteristic
polynomial

p(λ) = Det (Y − λI) =

n∏
i=1

(λ− λi) = 0

For λ•, eigenvector x• follows from solving (Y − λ•I)x• = 0
Column space/range space/image of a matrix Y is the span of the
column vectors

Im(Y) = {x ∈ Rn | Yx}
Nullspace/kernel of a matrix Y is

Ker(Y) = {x ∈ Rn | Yx = 0}
Rank(Y) = Dim (Im(Y)), Nullity(Y) = Dim (Ker(Y))

Rank(Y) + Nullity(Y) = n
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Function value
f(x) : Rn 7→ R

Gradient (steepest ascent direction, tangent)

∇f(x) =


∂f(x)
∂x1

∂f(x)
∂x2

...
∂f(x)
∂xn


Hessian (local curvature)

∇2f(x) =


∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

. . . ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2

2
. . . ∂2f(x)

∂x2∂xn

...
...

. . .
...

∂2f(x)
∂xnx1

∂2f(x)
∂xn∂x2

. . . ∂2f(x)
∂x2

n


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Definition (convex set)
A set C is convex if ∀x,y ∈ C, θ ∈ [0, 1] : θx+ (1− θ)y ∈ C

+0 + 0

Which of the above sets are convex? Why?

Definition (cone)
A set C is a cone if ∀x ∈ C, θ ≥ 0 : θx ∈ C

What is the relation of convex and conic sets? Are any of the above sets
cones?
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Examples of convex sets:
Empty set {∅}, singleton {x}, the whole space Rn

Hyperplanes {x | aTx = b}
Halfspaces {x | aTx ≤ b}
Norm balls {x | ∥x− x0∥ ≤ r}
Norm cones {(x, t) | ∥x− x0∥ ≤ t}
Polyhedra
{x | aTj x ≤ bj , j ∈ {1, . . . ,m}, cTj x = dj , j = {1, . . . , p}}
Positive semidefinite cone {X ∈ Sn | X ⪰ 0}

How to prove convexity of a set?
Intersection of convex sets is a convex set

rx0

x1

x2

t

x0

xy

z
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Definition (Jensen’s inequality, zeroth-order)
Function f : Rn 7→ R is convex if Dom(f) is a convex set and
∀x,y ∈ Dom(f) and θ ∈ [0, 1] it holds that

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

⇔ first-order:
Dom(f) convex,∀x,y ∈ Dom(f) : f(y) ≥ f(x) +∇f(x)T(y − x)

First-order Taylor approximation is a global underestimator
⇔ second-order: Dom(f) convex,∀x ∈ Dom(f) : ∇2f(x) ⪰ 0

+x

+
y

x

y
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Examples of convex functions:
Affine and linear functions (aTx+ c, aTx)
Quadratic functions 1

2x
TPx+ qTx+ r with P ∈ Sn, q ∈ Rn and

r ∈ R are convex iff P ∈ S⪰0, based on second-order condition
Exponential functions eax, on R with a ∈ R
Power functions xa, on R>0 with a ∈ (−∞, 0] ∪ [1,∞)
Norms
Max function max{x1, . . . , xn}
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Lemma
Assume an unconstrained optimization problem minx∈Rn f(x) with f(x)
convex and differentiable. Then, any point x satisfying ∇f(x) = 0 is a
global minimizer.

Proof.
Using the first-order definition of convexity, we have

∀x,y : f(y) ≥ f(x) +∇f(x)T(y − x)

Since ∇f(x) = 0, we receive

∀x,y : f(y) ≥ f(x),

concluding that x is indeed a global minimizer.

Strictly convex function −→ unique minimizer
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Definition (quasiconvex function, zeroth-order)
Function f : Rn 7→ R is quasiconvex if its domain and all sublevel sets
Sα = {x ∈ Dom(f) | f(x) ≤ α} for α ∈ R are convex

⇔ first-order: Dom(f) convex and
∀x,y ∈ Dom(f) : f(y) ≤ f(x) ⇒ ∇f(x)T(y − x) ≤ 0

When ∇f(x) ̸= 0, ∇f(x) defines a supporting hyperplane to the
sublevel set {y | f(y) ≤ x}
∇f(x) = 0 does not imply global optimality

⇔ second-order: Dom(f) convex and
∀x,y ∈ Dom(f) : yT∇f(x) = 0 ⇒ yT∇2f(x)y ≥ 0

In 1D, at any point with zero slope, the second-derivative is
non-negative
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Formalization of optimization problems

min
x∈Rn

f(x) objective/cost function

s.t. gi(x) ≤ 0,∀i ∈ {1, . . . ,m}, inequality constraints
hj(x) = 0,∀j ∈ {1, . . . , ℓ}, equality constraints

Optimization variable x

When i ∈ {∅} and j ∈ {∅}, the problem is called unconstrained

Domain of the opt. problem D =
⋂m

i=1 Dom(gi) ∩
⋂ℓ

j=1 Dom(hj)

x ∈ D is called a feasible point if it satisfies all the constraints,
infeasible otherwise
Feasible set: the set of all feasible points
Optimal value f∗ = inf{f(x) | gi(x) ≤ 0, i ∈ {1, . . . ,m}, hj(x) =
0, j ∈ {1, . . . , ℓ}}, f∗ = ∞ when infeasible and f∗ = −∞ when
unbounded from below
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x∗ is optimal point if it is feasible and f(x∗) = f∗

Optimal set Xopt = {x | gi(x) ≤ 0, i ∈ {1, . . . ,m}, hj(x) = 0, j ∈
{1, . . . , ℓ}, f(x) = f∗}
When X ̸= {∅}, the problem is solvable and the optimum value is
attained
Feasible point x with f(x) ≤ f∗ + ε is ε-suboptimal
Feasible point x is locally-optimal if ∃r > 0 such that
f(x) = inf{f(z) | gi(z) ≤ 0, i ∈ {1, . . . ,m}, hj(z) = 0, j ∈
{1, . . . , ℓ}, ∥x− z∥ ≤ r}
Inequality constraint is active when gi(x) = 0 and inactive otherwise
Redundant constraint does not change the feasible set
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The optimization problem

min
x∈Rn

f(x)

s.t. gi(x) ≤ 0,∀i ∈ {1, . . . ,m},
hj(x) = 0,∀j ∈ {1, . . . , ℓ},

is convex if f(x) and gi(x) are convex and and hj(x) is affine
The feasible set is convex as it is an intersection of convex domains
For f(x) quasiconvex instead of convex, the problem is called
quasiconvex
All ε-sublevel sets are convex ⇒ ε-suboptimal sets are convex ⇒
optimal set is convex
Opt. problem is equivalent to

max
x∈Rn

f̂(x)

s.t. gi(x) ≤ 0,∀i ∈ {1, . . . ,m},
hj(x) = 0,∀j ∈ {1, . . . , ℓ},

with f̂(x) = −f(x) concave
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Lemma
Let P be a convex optimization problem. Then, any locally optimal point x∗

is also globally optimal.

Proof.
Let x̂ be feasible and locally optimal, i.e.,

f(x̂) = inf {f(x) | x feasible, ∥x− x̂∥2 ≤ R} ,where R > 0.

For x̂ not globally optimal, there is an y such that f(y) < f(x̂) and
∥y − x̂∥2 > R.
Further, we set z = (1− θ)x̂+ θy with θ = R

2∥y−x̂∥2
. Then,

∥z− x̂∥2 = R
2 < R and z is feasible by convexity of the feasible set.

By convexity of f(x), we also have

f(z) ≤ (1− θ)f(x̂) + θf(y) < f(x̂)

which contradicts the local optimality assumption.
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Lemma
Let f(x) be differentiable and convex. Then, x∗ is optimal iff x∗ ∈ D and

∀y ∈ D : ∇f(x∗)T(y − x∗) ≥ 0

D

∇f(x)

+x∗
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Standard form

min
x∈Rn

cTx

s.t. Ax ≤ b

x ≥ 0

Linear objective function and linear inequality constraints
Q: How to write equality constraint in this form?
Q: What is the shape of the feasible set?

D
x∗

−c
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Standard form

min
x∈Rn

cTx

s.t. Ax ≤ b

x ≥ 0

Linear objective function and linear inequality constraints
Q: How to write equality constraint in this form?
Q: What is the shape of the feasible set? Convex polyhedron
If bounded and feasible, optimum value attained at the boundary of D
Vertices: basic feasible solutions, intersection of d inequality
constraints
Simplex algorithm
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Formulation

min
x∈Rn

1

2
xTPx+ qTx

s.t. Gx ≤ h,

Ax = b

where P ∈ Sn⪰0,G ∈ Rm×n and a ∈ Rp×n

D
x∗
−∇f0(x)
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Formulation

min
x∈Rn

1

2
xTPx+ qTx

s.t. Gx ≤ h,

Ax = b

where P ∈ Sn⪰0,G ∈ Rm×n and a ∈ Rp×n

We have ∇f(x) = Px+ q and ∇2f(x) = P

P ∈ Sn⪰0: convex problem
P = 0: linear programming problem
P indefinite: NP-hard

Addition of convex quadratic constraints

1

2
xTPix+ qT

i x+ ri ≤ 0

=⇒ quadratically constrained quadratic program

CTU D32OPT 22/33



Second-order cone programming 6/11/2023

Formulation

min
x∈Rn

fTx

s.t. ∥Aix+ bi∥2 ≤ cTi x+ di

Fx = g

With Ai ∈ Rk×n,
(
Aix+ bi, c

T
i x+ di

)
lies in the second-order cone

in Rk+1

With Ai = 0, reduction to linear programming
With ci = 0, reduction to quadratically constrained quadratic
programming
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Formulation

min
x∈Rn

cTx

s.t. A0 +

n∑
i=1

xiAi ⪯ 0

Ax = b

Reduction from linear programming with Ai diagonal
Reduction from second-order cone programming with

∥Aix+ bi∥2 ≤ cTi x+ di ⇐⇒
(
(cTi x+ di)I Aix+ bi

(Aix+ bi)
T cTi x+ di

)
⪰ 0
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Optimization problem P

p∗ = min
x∈Rn

f(x)

s.t. gi(x) ≤ 0, i ∈ {1, . . . ,m}
hj(x) = 0, j ∈ {1, . . . , ℓ}

Augment the objective function with a weighted sum of constraint
functions

L(x,λ,ν) = f(x) +

m∑
i=1

λigi(x) +

ℓ∑
j=1

νjhj(x)

Dom(L) = D × Rm × Rℓ

λ: Lagrange multipliers associated with inequality constraints
ν: Lagrange multipliers associated with equality constraints
ν and λ are the dual variables of the problem
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Define a Lagrangian dual function

d(λ,ν) = inf
x∈D

L(x,λ,ν)

= inf
x∈D

f(x) +

m∑
i=1

λigi(x) +

ℓ∑
j=1

νjhj(x)


When d(λ,ν) is unbounded below in x, we extend its value to −∞
d(λ,ν) is always convex, even when the original problem P is not
For any λ ≥ 0 and ν, we have d(λ,ν) ≤ p∗

Let x̃ be feasible to P and let λ ≥ 0
Then, we have

∑m
i=1 λigi(x̃) +

∑ℓ
j=1 νjhj(x̃) ≤ 0

Thus,
L(x̃,λ,ν) = f(x̃) +

∑m
i=1 λigi(x̃) +

∑ℓ
j=1 νjhj(x̃) ≤ f(x̃)

Finally, d(λ,ν) = infx∈D L(x,λ,ν) ≤ L(x̃,λ,ν) ≤ f(x̃)

If d(λ,ν) > −∞, the pair (λ,ν) is called dual feasible
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Consider linear program in the equality form

min
x∈Rn

cTx

s.t. Ax = b

x ≥ 0

The Lagrangian evaluates as

L(x,λ,ν) = cTx− λTx+ νT (Ax− b)

= −νTb+
(
c− λ+ATν

)T
x

Dual function

d(λ,ν) = inf
x

L(x,λ,ν)

= inf
x

[
−νTb+

(
c− λ+ATν

)T
x
]

d(λ,ν) =

{
−bTν if c− λ+ATν = 0

−∞ otherwise
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We have that d(λ,ν) ≤ p∗ for any λ ≥ 0: what is the best lower
bound?
Dual optimization problem

d∗ = max
λ∈Rm,ν∈Rℓ

d(λ,ν)

s.t. λ ≥ 0

Convex optimization problem: why?
Example: linear programming

max
λ∈Rm,ν∈Rℓ

− bTν

s.t. c− λ+ATν = 0

In general, we have weak duality, i.e., d∗ ≤ p∗
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Strong duality d∗ = p∗ does not hold in general
It usually holds for convex problems

min
x∈Rn

f(x)

s.t. gi(x) ≤ 0, i ∈ 1, . . . ,m

Ax = b

Conditions under which strong duality holds: constraint qualifications
Slater’s condition: there exists x̃ strictly feasible, that is
x̃ ∈ Relint(D), or

x̃ ∈ {x | ∀i ∈ {1, . . . ,m} : gi(x)<0,Ax = b}
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f(x)− d(λ,ν) is a certificate of ε-suboptimality
Let x∗, λ∗, and ν∗ be primal and dual optimal and let d∗ = p∗. Then,

f(x∗) = d(λ∗,ν∗) = inf
x∈Rn

f(x) +

m∑
i=1

λ∗
i gi(x) +

ℓ∑
j=1

ν∗j hj(x)


≤ f(x∗) +

m∑
i=1

λ∗
i gi(x

∗) +

ℓ∑
j=1

ν∗j h
∗
j (x

∗)︸ ︷︷ ︸
≤0

≤ f(x∗)

Consequently,
∀i ∈ {1, . . . ,m} : λ∗

i gi(x
∗) = 0 (complementary slackness)

x∗ is a minimizer of L(x,λ∗,ν∗)
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Assume that gi and hi are differentiable and let x∗,λ∗ and ν∗ be
optimal primal and dual points with zero optimality gap, we have

∇f(x∗) +

m∑
i=1

λ∗
i∇gi(x

∗) +

ℓ∑
j=1

ν∗j∇hj(x
∗) = 0 (stationarity of L)

∀i ∈ {1, . . . ,m} : gi(x
∗) ≤ 0 (primal feas.)

∀j ∈ {1, . . . , ℓ} : hj(x
∗) = 0 (primal feas.)
λ∗ ≥ 0 (dual feas.)

∀i ∈ {1, . . . ,m} : λ∗
i gi(x

∗) = 0 (compl. slackness)

For primal convex, KKT conditions are sufficient for the points to be
primal and dual optimal
For convex problems satisfying Slater constraint qualification, KKT are
sufficient and necessary conditions of optimality
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