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Finite elements overview 20/11/2023

displacements u

elongations e internal forces s

nodal forces f

e = Bu geometric

s = D(a, I)e

physical

f = BTsstatic

f = BTD(a, I)Bu = K(a, I)u

equilibrium
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Finite elements overview 20/11/2023

Geometric matrix

Bi =

− cos(αi) − sin(αi) 0 cos(αi) sin(αi) 0
sin(αi)

ℓ − cos(αi)
ℓ −1 − sin(αi)

ℓ
cos(αi)

ℓ 0
sin(αi)

ℓ − cos(αi)
ℓ 0 − sin(αi)

ℓ
cos(αi)

ℓ −1


Material stiffness matrix (not diagonal!)

Di(ai, Ii) =

Eiai/ℓi 0 0
0 4EiIi

ℓi
2EiIi
ℓi

0 2EiIi
ℓi

4EiIi
ℓi


Element stiffness matrix

Ki(ai, Ii) = BT
i Di(ai, Ii)Bi
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Finite elements overview 20/11/2023

Stiffness matrix in 2D has rank 3. Thus, it can also be written using a
generalized geometric matrix

B̂i =

− cos(αi) − sin(αi) 0 cos(αi) sin(αi) 0

− 2 sin(αi)
ℓ

2 cos(αi)
ℓ 1 2 sin(αi)

ℓ − 2 cos(αi)
ℓ 1

0 0 −1 0 0 1


and diagonal generalized material stiffness matrix

D̂i(ai, Ii) =

Eiai

ℓi
0 0

0 3EiIi
ℓi

0

0 0 EiIi
ℓi


Then, ŝ is a vector of generalized internal forces and ê a vector of
generalized elongations
ŝ and ê span the same spaces as s and e do but they have a different
physical interpretation
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Cross-section parametrization 20/11/2023

If Ii and ai are independent, we can build a convex optimization
problem (analogously to SOCP and linear SDP formulations for trusses)
However, V does not bound Ii from above. Ii → ∞ is optimal
Geometrically, this is equivalent to infinitely-large infinitely-thin
hollow cross-section with the area ai

To avoid such situation, we restrict the optimization to a family of
cross-sections with the moment of inertia being a polynomial function
of ai: Ii(ai) = c1ai + c2a

2
i + c3a

3
i

10
t i

10ti

ti

ai = 28t2i
Ii = 2· 1

12 ·10ti·t
3
i+

1
12 ·ti·8t

3
i+2·10t2i ·(4.5ti)2 = 449.3t4i

c2 = Ii
a2
i
= 449.3

784 ≈ 0.573 (c1 = c3 = 0)

0.3

h
i

ai = 0.3hi

Ii =
1
12 · 0.3 · h3

i = 0.025h3
i

c3 = Ii
a3
i
= 0.025

0.027 ≈ 0.926 (c1 = c2 = 0)
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Cross-section parametrization: standard library 20/11/2023

IPE section (degree-2 fit)

0 0.005 0.01 0.015

a[m2]

0

0.5

1

I
[m

4
]

#10!3

std. library
pol. -t

HEA section (degree-3 fit)

0 0.01 0.02 0.03 0.04

a[m2]

0

5

10

I
[m

4
]

#10!3

std. library
pol. -t

UPE section (degree-3 fit)

0 0.002 0.004 0.006 0.008 0.01

a[m2]

0

1

2

I
[m

4
]

#10!4

std. library
pol. -t

HEB section (degree-3 fit)

0 0.01 0.02 0.03 0.04

a[m2]

0

2

4

6

8

I
[m

4
]

#10!3

std. library
pol. -t

CTU D32OPT 9/34



20/11/2023

Compliance minimization:
sizing via optimality criteria
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Compliance minimization: sizing 20/11/2023

Ground structure design domain
Compliance minimization is non-convex (in contrast to trusses)
Impose a ≥ ε1 > 0 to secure K(a) ∈ Sndof

≻0

Sizing problem formalized as

min
a∈Rne ,u∈Rndof

fTu (1a)

subject to K(a)u = f (1b)

ℓTa ≤ V (1c)
a ≥ ε1 (1d)

Simple and efficient heuristic optimization algorithm: optimality
criteria (OC)

Usually converges to good-quality locally-optimal points
Convergence to a stationary point not guaranteed
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Sizing via optimality criteria 20/11/2023

Lagrangian function:

L(a,u,λ, µ,ν) = fTu+λT (K(a)u− f)+µ
(
ℓTa− V

)
+νT (ε1− a)

Karush-Kuhn-Tucker conditions:

primal feasibility: 0 = K(a∗)u∗ − f

V ≥ ℓTa

a ≥ ε1

dual feasibility: 0 ≤ µ∗

0 ≤ ν∗

complementary slackness: 0 = µ∗ (ℓTa∗ − V
)

0 = (ν∗)
T
(ε1− a∗)

stationarity:
∂L
∂u

= fT + (λ∗)
T
K(a∗) = 0 → λ∗ = −u

∂L
∂ai

= (λ∗)
T ∂K(a∗)

∂ai
u∗ + µ∗ℓi − ν∗i

= − (u∗)
T ∂K(a∗)

∂ai
u∗ + µ∗ℓi − ν∗i = 0
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Sizing via optimality criteria 20/11/2023

Assume that a∗ > ε1. Then, KKT conditions imply that ν∗ = 0
Consequently, the elements a∗ > ε1 must have equal energy

µ∗ =
1

ℓi
(u∗)

T ∂K(a∗)

∂ai
u∗

and the volume constraint is active
OC method: update scheme that balances µ∗ for all the elements

1. Bisection to find µ(k) such that

V =

ne∑
i=1

ℓi max

a
(k−1)
i

1
ℓi

(
u(k−1)

)T ∂K(a(k−1))
∂ai

u(k−1)

µ(k)
, ε




µ(k) = 1 implies a local optimum
2. Update step

a
(k)
i = max

a
(k−1)
i

1
ℓi

(
u(k−1)

)T ∂K(a(k−1))
∂ai

u(k−1)

µ(k)
, ε
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Compliance minimization:
complementary-strain-energy-based formulation
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Complementary strain energy-based formulation 20/11/2023

Generalized formulation for trusses by exploiting the rank-3 stiffness
matrix decomposition
Complementary strain energy function (1/2 removed to stay consistent)

Π2(a, I, ŝ) =

ne∑
i=1

(
ℓiŝ

2
1,i

Eiai
+

ℓiŝ
2
2,i

3EiIi
+

ℓiŝ
2
3,i

EiIi

)
such that B̂Tŝ = f

The same procedure as in truss SOCP formulation

w1,i ≥
ℓiŝ

2
1,i

Eiai
→ w1,i + ai ≥

∥∥∥(2√ ℓi
Ei

ŝ1,i w1,i − ai

)∥∥∥
2

w2,i ≥
ℓiŝ

2
2,i

3EiIi
→ w2,i + Ii ≥

∥∥∥(2√ ℓi
3Ei

ŝ2,i w2,i − Ii

)∥∥∥
2

w3,i ≥
ℓiŝ

2
3,i

EiIi
→ w3,i + Ii ≥

∥∥∥(2√ ℓi
Ei

ŝ3,i w3,i − Ii

)∥∥∥
2

Introduce linearized monomials a(1)i , a(2)i , and a
(3)
i
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Complementary-strain-energy-based formulation 20/11/2023

min
a,a(2),a(3),ŝ,w

3∑
j=1

1Twj (2a)

subject to B̂Tŝ = f (2b)

w1,i + ai ≥
∥∥∥(2√ ℓi

Ei
ŝ1,i w1,i − ai

)∥∥∥
2

(2c)

w2,i +
(
c1ai + c2a

(2)
i + c3a

(3)
i

)
≥∥∥∥(2√ ℓi

3Ei
ŝ2,i w2,i −

[
c1ai + c2a

(2)
i + c3a

(3)
i

])∥∥∥
2

(2d)

w3,i +
(
c1ai + c2a

(2)
i + c3a

(3)
i

)
≥∥∥∥(2√ ℓi

Ei
ŝ3,i w3,i −

[
c1ai + c2a

(2)
i + c3a

(3)
i

])∥∥∥
2

(2e)

a
(2)
i = a2i (2f)

a
(3)
i = a

(2)
i ai (2g)

ℓTa ≤ V (2h)
a ≥ 0 (2i)

CTU D32OPT 16/34



Complementary-strain-energy-based formulation 20/11/2023

Solution via branch-and-bound-type method, Gurobi optimizer
Spatial branching of non-convex constraints
Very nice explanation at https://www.gurobi.com/resource/non-
convex-quadratic-optimization/

ai

a
(2

)
i

a
(2)
i = a2

i

ai a
(2)
i

a
(3

)
i

a
(3)
i = aia

(2)
i
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Compliance minimization:
potential-energy-based SDP
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Potential-energy-based SDP 20/11/2023

Recall (truss lecture) that the compliance optimization problem is
equivalent to the linear SDP formulation:

min
a∈Rne ,c∈R

c (3a)

subject to
(

c −fT

−f K(a)

)
⪰ 0, (3b)

ℓTa ≤ V , (3c)
a ≥ 0 (3d)

Such reformulation also works here, there were no assumptions on
linearity of K(a)

For frames, the polynomial matrix inequality makes the problem
non-convex
Rewriting (3b) via characteristic polynomial results in polynomial
inequality → basic semi-algebraic feasible set
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Potential-energy-based SDP 20/11/2023

Let f(c) = c be the objective function
The constraints can be incorporated into a single matrix inequality

G(a, c) =



c −fT 0 0 . . . 0
−f K(a) 0 0 . . . 0
0 0 V − ℓTa 0 . . . 0
0 0 0 ai . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . ane


Therefore, the problem can also be formalized as

f∗ = min f(c), subject to G(a, c) ⪰ 0
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Convex reformulation 20/11/2023

This is equivalent to an infinite-dimensional convex problem: we
maximize λ such that we “touch” the feasible domain K (G)

f∗ = sup
λ

λ, s.t. ∀a, c ∈ K(G) : λ ≤ f(c)

Since f(c) and λ are polynomial functions, this is equivalent to (f − λ)
being a non-negative polynomial on K (G)

f∗ = sup
λ

λ, s.t. (f − λ) ∈ Ck(K(G))
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Certifying non-negativity 20/11/2023

Assume there exists p0 and R that are Sum-Of-Squares such that
p0 + ⟨R,G⟩ ≥ 0 is compact
Then, Putinar’s Positivestellensatz1 extended to the PMI case2 enables
maximization of λ with certified feasible set non-negativity

sup
λ,p0,R

λ (4a)

subject to f − λ = p0 + ⟨R,G⟩ , p0,R are SOS (4b)

For the maximum degree in the polynomials p0 and R fixed to 2r,
non-negatitivity of f − λ on K(G)(r) can be checked via a
finite-dimensional linear SDP
Problems: degree is not known! Recovery of global minimizers?

1M. Putinar, Positive polynomials on compact semi-algebraic sets, Indiana University
Mathematics Journal, 42(3):969–984, 1993, doi: 10.2307/24897130

2D. Henrion and J.-B. Lasserre, Convergent relaxations of polynomial matrix inequalities
and static output feedback, IEEE Transactions on Automatic Control, 51(2):192–202, 2006, doi:
10.1109/tac.2005.863494
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Certifying non-negativity: scalar example 20/11/2023

Is p(x) non-negative on K(x)?

p(x) = 2x3 − 10x2 + 6x+ 18 with K(x) =
{
1− x2 ≥ 0

}
Based on Putinar’s Positivestellensatz

p(x) = (1 x x2)

(
A0 A1 A2

A1 A3 A4

A2 A4 A5

)(
1
x
x2

)
+ (1 x)

(
B0 B1

B1 B2

)(
1
x

) [
1− x2

]
Thus, we search for

find A,B

subject to

18 = A0 +B0

6 = 2A1 + 2B1

−10 = 2A2 +A3 +B2 −B0

2 = 2A4 − 2B1

0 = A5 −B2

A,B ⪰ 0 b(x)TAb(x) = b(x)TLLTb(x)

Non-negativity certificate
p(x) = (x2 − 2x− 3)2 + (x− 3)2(1− x2)
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Moment-sum-of-squares hierarchy 20/11/2023

The dual problem is equivalent to an infinite-dimensional (r → ∞)
linear SDP

f (r) =min
y

qTy

subject to M2r(y) ⪰ 0,

M2r−d(Gy) ⪰ 0

in the moment variables

y =
(
yc1 ya1

1
. . . yan1

e
yc2 . . . ya2r

ne

)
that are associated with the polynomial space basis b(c,a)
No free lunch: we cannot solve infinite dimensional convex SDP
However, we may consider a hierarchy of finite-dimensional convex
truncations of increasing size
Why MSOS instead of the SOS hierarchy? We can recognize global
optimality
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Moment-sum-of-squares hierarchy: example 20/11/2023

min
a,c

c (5a)

subject to
(
c f

f a2

)
⪰ 0, (5b)

V − a ≥ 0, (5c)
a ≥ 0. (5d)

First relaxation (linearization): b1(a, c) =
(
1 c a c2 ca a2

)T
min
y

yc1 (6a)

subject to
(
yc1 f

f ya2

)
⪰ 0, (6b)

V − ya1 ≥ 0, (6c)
ya1 ≥ 0, (6d) 1 yc1 ya1

yc1 yc2 yc1a1

ya1 yc1a1 ya2

 ⪰ 0 (6e)
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Moment-sum-of-squares hierarchy: example 20/11/2023

Second relaxation: b2(a, c) = (1 c a c2 ca a2 c3 c2a ca2 a3 c4

c3a c2a2 ca3 a4)T

min
y

yc1 (7a)

subject to



yc1 f yc2 fyc1 yc1a1 fya1

f ya2 fyc1 yc1a2 fya1 ya3

yc2 fyc1 yc3 fyc2 yc2a1 fyc1a1

fyc1 yc1a2 fyc2 yc2a2 fyc1a1 yc1a3

yc1a1 fya1 yc2a1 fyc1a1 yc1a2 fya2

fya1 ya3 fyc1a1 yc1a3 fya2 ya4

 ⪰ 0, (7b)

 V − ya1 V yc1 − yc1a1 V ya1 − ya2

V yc1 − yc1a1 V yc2 − yc2a1 V yc1a1 − yc1a2

V ya1 − ya2 V yc1a1 − yc1a2 V ya2 − ya3

 ⪰ 0, (7c)

 ya1 yc1a1 ya2

yc1a1 yc2a1 yc1a2

ya2 yc1a2 ya3

 ⪰ 0, (7d)


1 yc1 ya1 yc2 yc1a1 ya2

yc1 yc2 yc1a1 yc3 yc2a1 yc1a2

ya1 yc1a1 ya2 yc2a1 yc1a2 ya3

yc2 yc3 yc2a1 yc4 yc3a1 yc2a2

yc1a1 yc2a1 yc1a2 yc3a1 yc2a2 yc1a3

ya2 yc1a2 ya3 yc2a2 yc1a3 ya4

 ⪰ 0 (7e)
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Moment-sum-of-squares hierarchy 20/11/2023

Finite-dimensional relaxations: ∀r : f (r) ≤ f∗

Monotonic convergence (larger portion of the infinite-dimensional
SDP is considered with increasing r): f (r) ↑ f∗ as r → ∞
Sufficient condition of global optimality from the theory of moments
— rank flatness of the moment matrices
Numerical procedure for extraction of (the) globally-optimal solutions
For our problem

a > 0, c → ∞ is a feasible solution, hence not compact
0 ≤ ai ≤ ai, where ai = V /ℓi
0 ≤ c ≤ c, where c = fTK(ã)−1f
Scaling to the [−1, 1] domains
Bound constraints a2s,i ≤ 1 and c2s ≤ 1

Then, the feasible set is algebraically compact
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Moment-sum-of-squares hierarchy 20/11/2023

min
as,cs

0.5 (cs + 1) c

subject to
(

1
2 (cs + 1) c −fT

−f K(as)

)
⪰ 0,

2− ne − 1Tas ≥ 0,

a2sc ≤ 1,

c2sc ≤ 1

Based on y associated with (unscaled) 1-degree monomials â, ĉ we can
compute feasible upper bounds

ã satisfies convex constraints
The pair â and ĉ generally fails to satisfy the equilibrium PMI
Correct the compliance

c̃ = fTK(â)†f

This can be done because f ∈ Im(K(â)) is guaranteed
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Moment-sum-of-squares hierarchy 20/11/2023

Lemma
c̃− f (r) ≤ ε is a sufficient condition of global ε-optimality.

Because hierarchy convergence is independent of the objective
function, K(G)(r) ↑ conv(K(G))
For r → ∞ optimization of f(a, c) over K(G) is equivalent to
optimization of f(x) over conv(K(G))

Theorem
For optimization problems with global minimizers forming a convex set, it
holds that c̃− f (r) = 0 as r → ∞.

1

2

3

1

2

1.0

0.
5

0.
5

1.6

1.0
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Moment-sum-of-squares hierarchy 20/11/2023

Lemma
c̃− f (r) ≤ ε is a sufficient condition of global ε-optimality.

Because hierarchy convergence is independent of the objective
function, K(G)(r) ↑ conv(K(G))
For r → ∞ optimization of f(a, c) over K(G) is equivalent to
optimization of f(x) over conv(K(G))

Theorem
For optimization problems with global minimizers forming a convex set, it
holds that c̃− f (r) = 0 as r → ∞.

1 2

3

11 1

1
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Examples
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MBB beam problem 20/11/2023
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c
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MBB beam problem 20/11/2023

(a) ctruss = 324.0 (casframe = 314.5) (b) cOC = 327.4

(c) cPO2 = 280.1 (d) c∗PO3 = 210.3
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Modular frame 20/11/2023

a b

c d

e f

g h

i
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(a) cPO1 = 6584.0,
LB=2248.9

(b) cPO2 = 5255.9,
LB=4629.8

(c) c∗PO3 = 4996.5,
LB=4996.5
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Summary 20/11/2023

Optimization of frame structures generalizes truss TO
Resulting optimization problems are non-convex even in the case of
compliance minimization
Solution techniques:

Non-linear programming/OC method: local optimum is usually
achieved
Global approaches: non-convex quadratic programming (Gurobi)
and moment-sum-of-squares hierarchy (e.g., Mosek)
No free lunch: global optimality is usually achieved for
small-scale problems only
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