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f =BT™D(a,I)Bu=K(a,I)u
displacements u — »  nodal forces f
equilibrium
A
e = Bu | geometric static | f = BTs
Y
) physical
elongations e P internal forces s
s=D(a,I)e




Finite elements overview 20/11/2023

Deformed beam
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Finite elements overview

m Geometric matrix

—cos(e;) —sin(ay) 0
B, = sin(ay;) _cos(a) -1
sin{ai) _ cosfai) 0
¢ [

m Material stiffness matrix (not diagonal!)

D;(ai, I;) =

m Element stiffness matrix

Eia;[t;
0
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cos(a;) sin(ey) 0
_ sin(ay) cos(a;) 0
_ sin(a;) cosfzxi) -1
¢

0 0

4E;1; 2F;1;
£; 0;

2E;1; 4E;1;

K;(a;, I;) = B{ D;(a;, I;)B;




Finite elements overview 20/11/2023

m Stiffness matrix in 2D has rank 3. Thus, it can also be written using a
generalized geometric matrix

—cos(a;) —sin(e;) 0 cos(ey) sin(ey) O

» _ 2 sin i 2 i 2 sin i 2 i
B, = |- s Z(a ) cose(a ) 1 s [(a ) cosé(a ) 1
0 0 —1 0 0 1

and diagonal generalized material stiffness matrix

e o o
Dj(a;, I;)=| 0 25L& 0
0 0 L

A

m Then, S is a vector of generalized internal forces and € a vector of
generalized elongations

® S and é span the same spaces as s and e do but they have a different
physical interpretation




Cross-section parametrization 20/11/2023

m If I; and q; are independent, we can build a convex optimization
problem (analogously to SOCP and linear SDP formulations for trusses)

m However, V does not bound I; from above. I; — oo is optimal

m Geometrically, this is equivalent to infinitely-large infinitely-thin
hollow cross-section with the area a;

m To avoid such situation, we restrict the optimization to a family of
cross-sections with the moment of inertia being a polynomial function
of a;: Ii(a;) = cra; + caa? + cza?
10¢; m a; = 28t7

w1 =2510t 13+ 5 -8t +2-10t2 - (4.5¢;)? = 449.3t}

L = M93 ~ 0573 (c1 = c3 = 0)
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R Cross-section parametrization: standard library 20/11/2023

IPE section (degree-2 fit) UPE section (degree-3 fit)
-3 10~
1 x 10 ) X
+  std. library +  std. library
pol. fit pol. fit

770002 0.004  0.006 0008  0.01

a[m?]
HEA section (degree-3 fit) HEB section (degree-3 fit)
x1073 x107%
10 87
+  std. library + std. library
pol. fit 6L pol. fit
E 5 X
~ ~
2+
O+ Lt 0 A N s
0 0.01 0.02 0.03 0.04 0.01 0.02 0.03 0.04
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Compliance minimization: sizing 20/11/2023

m Ground structure design domain
m Compliance minimization is non-convex (in contrast to trusses)
= Impose a > £1 > 0 to secure K(a) € S{'§*

m Sizing problem formalized as

aeR"ern &IelR"dof fTu (1)
subject to K(a)u = f (1b)
fa<V (1c)

a>el (1d)

m Simple and efficient heuristic optimization algorithm: optimality
criteria (OC)
m Usually converges to good-quality locally-optimal points
= Convergence to a stationary point not guaranteed
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Sizing via optimality criteria
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m Lagrangian function:

Lla,u, X, p,v) =fTu+AT (K(a)u —f)+p (£Ta—V)+v' (1 —a)

m Karush-Kuhn-Tucker conditions:

primal feasibility:

dual feasibility:

complementary slackness:

stationarity:

0=K(a")u* —f

V >4Ta
a>el
0<p*
0<v*
0=yp" (€a* - V)
0= ()" (c1-a%)
% =T+ (A TK@)=0—- A" =—u
oL o #\ T 8K(a*) * * *
aai_( ) 6@7; u +/’L£1_Vi
= — (u*)T aK(a )1,].>‘< + M*gl — l/;k =0

8ai




Sizing via optimality criteria 20/11/2023

m Assume that a* > ¢1. Then, KKT conditions imply that v* = 0
m Consequently, the elements a* > €1 must have equal energy
* 1 «\ T 8K(a*) *
and the volume constraint is active
m OC method: update scheme that balances p* for all the elements
1. Bisection to find x(*) such that

ne 1 (u<k—1>)T %uw—l)

V = E £; max agk_l) b ® : ,E
; I
i=1

u®) = 1 implies a local optimum
2. Update step

1 k—1\T oK@y (p_
- (k—1) 7, (u( 1)) da; uv=1)
= max ai

o .

(5
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Compliance minimization:
complementary-strain-energy-based formulation
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/'“{{?é Complementary strain energy-based formulation 20/11/2023

m Generalized formulation for trusses by exploiting the rank-3 stiffness
matrix decomposition
m Complementary strain energy function (1/2 removed to stay consistent)

(LR, 6B, L3, .
(a,Lg) =Y (Ea + 3EIZ +gp | suchtha BTs=f
=1

m The same procedure as in truss SOCP formulation

0;52 .

1,2 A

Wi 2> —— —wi; +a; > ’(2\/ —"“ésl,i Wi, — ai) ’
Eiai v 2

2y/35 3E S2i way _Ii> ‘2

! _>w2,i+li2)

0;8%,
w3->;3’f _>w3,i+IiZ’<\/ 783, w3,i_Ii)‘

m Introduce linearized monomials aEl), a§2) , and al(?’)




/yf/é Complementary-strain-energy-based formulation 20/11/2023

Z 17w, (2a)

a, a(2) a(3) s,w “4

subject to BTs =f (2b)

w12+az>H( N -81, wLi—ai) (2¢)

w,i + <Clai + 02(1( )+ 030(3)>

H (2 % SZEi'i §2*i W2, — |:Claz + Cga( ) + C3a§3)]) H2

ws,; + <Clai + CQG§2) + 630,1(»3)> >

.

(2d)

’(2@&“ w3, — [c1ai + CZCL( ) + C3a(3)} ) H2 *
(2) 2 (2f)
af.?’) — g, (2e)
Ta<V o

a>0 (21)




Complementary-strain-energy-based formulation 20/11/2023

m Solution via branch-and-bound-type method, Gurobi optimizer
= Spatial branching of non-convex constraints
= Very nice explanation at https://www.gurobi.com/resource/non-
convex-quadratic-optimization/

(2)

XL AT (177
AT
%

3 _ 4.q®



https://www.gurobi.com/resource/non-convex-quadratic-optimization/
https://www.gurobi.com/resource/non-convex-quadratic-optimization/
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Compliance minimization:
potential-energy-based SDP
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Potential-energy-based SDP 20/11/2023

m Recall (truss lecture) that the compliance optimization problem is
equivalent to the hnear SDP formulation:

acRRerceR (32)

. c —fT
subject to <_f K(a)) >0, (3b)
Ta<V, 30)
a>0 3d)

m Such reformulation also works here, there were no assumptions on
linearity of K(a)

m For frames, the polynomial matrix inequality makes the problem
non-convex

m Rewriting (3b) via characteristic polynomial results in polynomial
inequality — basic semi-algebraic feasible set

D320PT 19/34



Potential-energy-based SDP 20/11/2023

m Let f(c) = c be the objective function
m The constraints can be incorporated into a single matrix inequality

¢ —fT 0 0 0
—f K(a) 0 0 0
0 0 V-—£Ta 0 0
Gacd=|[o o 0 ai 0
0 0 0 0 ... an

e

m Therefore, the problem can also be formalized as

f* =min f(c), subjectto G(a,c) >0




Convex reformulation 20/11/2023

m This is equivalent to an infinite-dimensional convex problem: we
maximize A such that we “touch” the feasible domain K (G)

ff=sup), st.Va,ce K(G): A< f(o)
A

m Since f(c) and \ are polynomial functions, this is equivalent to (f — \)
being a non-negative polynomial on K (G)
ff=sup), st (f—A) €CrK(Q))
A
30

20
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Certifying non-negativity

m Assume there exists pg and R that are Sum-Of-Squares such that
po + (R, G) > 0 is compact

m Then, Putinar’s Positivestellensatz! extended to the PMI case? enables
maximization of A with certified feasible set non-negativity

sup A (4a)
)\,po,R
subjectto f — A =po + (R, G), po,R are SOS (4b)

m For the maximum degree in the polynomials py and R fixed to 2r,
non-negatitivity of f — A on /C(G)(" can be checked via a
finite-dimensional linear SDP

m Problems: degree is not known! Recovery of global minimizers?

M. Putinar, Positive polynomials on compact semi-algebraic sets, Indiana University
Mathematics Journal, 42(3):969-984, 1993, doi: 10.2307/24897130

2D. Henrion and J.-B. Lasserre, Convergent relaxations of polynomial matrix inequalities
and static output feedback, IEEE Transactions on Automatic Control, 51(2):192-202, 2006, doi:
10.1109/tac.2005.863494
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Certifying non-negativity: scalar example 20/11/2023

m Is p(z) non-negative on K(x)?
p(z) = 22° — 102° + 62 + 18 with K(z) = {1 — 2° > 0}

m Based on Putinar’s Positivestellensatz
Ao Ay A 1 B. B L )
pa)=(1 = =) (g; s g;) (;2)+<1 95 2) () 1-e?

m Thus, we search for

find A,B
18 = Ay + By
6=24,+28
) —10 =2A5 + A3 + By — By
subject to 59— 94, 2B,
0=A5— By

AB>0 b(x)TAb(z) = b(z)TLL b(x)

m Non-negativity certificate
p(z) = (a7 = 20 = 3)* + (v — 3)*(1 — 2?)




Moment-sum-of-squares hierarchy 20/11/2023

m The dual problem is equivalent to an infinite-dimensional (r — co)
linear SDP

[ =ming'y

subject to My,.(y) = 0,
M2r7d(Gy) E 0

in the moment variables

y= (ycl Yol -+ Ya 1 Ye2 o - ya%2>

n,

that are associated with the polynomial space basis b(c, a)
m No free lunch: we cannot solve infinite dimensional convex SDP

m However, we may consider a hierarchy of finite-dimensional convex
truncations of increasing size

m Why MSOS instead of the SOS hierarchy? We can recognize global
optimality




e Moment-sum-of-squares hierarchy: example  20/11/2023
min ¢ (52)
a,c
subject to ( C{) =0, (5b)
V—a>0, (50)
a>0. (5d)
= First relaxation (linearization): by(a,c) = (1 ¢ a ¢ ca az)T
min g1 (6a)
y
subject to (y£1 f ) =0, (6b)
f Ya?2
V= yar >0, (60)
Yar 2 0, (6d)
1 Yer Yar
Yer Ye2 Yerar | =0 (6e)

Yal  Yeclat Ya2




Moment-sum-of-squares hierarchy: example  20/11

m Second relaxation: by (a,c) = (1 ¢ a ¢ ca a® ¢ c2a ca? a® c*

Aa ca? ca® a*)T

min y 1 (7a)
y
Yol f Y2 fya Yelal fya
f Y2 fyaa Yol g2 fyq1 Y3
subjectto | Ye? fya Y3 fYe2 Ye2,1 fYiq1 =0, (b

fYcl Y142 fYe2  Ye2.2  fyi,l Ye1,3

Yelgl  fYsl  Ye2,1 fYaa1 Yela2 fyq2

JYa1 Ya3  [Yelal  Yol,3 Ya2 Yol

- V—ya Vya =y, Vo —y,2

Vya =y, Vy2 —y.2,1 Vyer,1 —ye1,2 =0, (7¢)
VY1 — Y,2 Vyelal — Ye1,2 Vy.2 —Yu3

Ya2 Yelg2 Ya3

1 Yol Ygl Y2 Yelgl Y2
Ye1 Ye2 Yelgl Y3 Ye24q1  Yelg2
Yql Yelgl Yu2 Ye2,1  Yelg2 Yu3 -0 )
Ye2 Ye3 Ye241 Yea Y341l Y242 =
Yelal  Ye241  Yoly2  YeBal  Yp2,2  Yol,3
Y2 Yolgy2 Ya3 Y242 Yolg3 Yod

Yal Yelal Ya2
Yelal Ye2q1 Yela2 =0, 7d)




Moment-sum-of-squares hierarchy 20/11/2023

®m Finite-dimensional relaxations: Vr : f(") < f*

= Monotonic convergence (larger portion of the infinite-dimensional
SDP is considered with increasing 7): f(") 1 f* as r — oo

= Sufficient condition of global optimality from the theory of moments
— rank flatness of the moment matrices

m Numerical procedure for extraction of (the) globally-optimal solutions
m For our problem
m a > 0, c — oo is a feasible solution, hence not compact

» 0 <a; <a;, wherea; =V /{;

= 0<c<gcwheree=fTK(a) 'f

m Scaling to the [—1, 1] domains

= Bound constraints a2 ; < 1and ¢ < 1

m Then, the feasible set is algebraically compact




Moment-sum-of-squares hierarchy

20/11/2023

min 0.5 (¢cs +1)¢
As,Cs
1 = _¢T
subject to (2 (CS_—; e K(i )>

2—ne—1Ta;, >0,
a’ <1,

SC —

— )

2
ce. <1

m Based on y associated with (unscaled) 1-degree monomials a, ¢ we can
compute feasible upper bounds

m a satisfies convex constraints

m The pair & and ¢ generally fails to satisfy the equilibrium PMI
m Correct the compliance

¢=fTK(a)'f
m This can be done because f € Im(K(a

)) is guaranteed




Moment-sum-of-squares hierarchy 20/11/2023

Lemma
¢ — f) < e is a sufficient condition of global -optimality.
m Because hierarchy convergence is independent of the objective
function, K(G)™ 1 conv(K(G))
m For r — oo optimization of f(a, ¢) over K(G) is equivalent to
optimization of f(x) over conv(K(G))

Theorem
For optimization problems with global minimizers forming a convex set, it
holds that ¢ — f(") = 0 as r — oo.

D320PT



Moment-sum-of-squares hierarchy 20/11/2023

Lemma
¢ — f) < e is a sufficient condition of global -optimality.
m Because hierarchy convergence is independent of the objective
function, K(G)™ 1 conv(K(G))
m For r — oo optimization of f(a, ¢) over K(G) is equivalent to
optimization of f(x) over conv(K(G))
Theorem
For optimization problems with global minimizers forming a convex set, it
holds that ¢ — f(") = 0 as r — oo.

Z

—
(1] _ 2] R
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Examples

D320PT



i MBB beam problem 20/11/2023

[13] 14
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MBB beam problem 20/11/2023

P T

() ctruss = 324.0 (Casframe = 314.5) (b) coc = 3274

() cpoz = 280.1 () choy = 210.3




feié Modular frame 20/11/2023

REE

2 2 (a) CPO1 = 6584.0, (b) cpO2 = 5255.9 (C) o — 4996.5
’ PO3 4
B 0T B=2248.9 LB=1629.8 Lpohos”




Summary 20/11/2023

m Optimization of frame structures generalizes truss TO

m Resulting optimization problems are non-convex even in the case of
compliance minimization

m Solution techniques:

= Non-linear programming/OC method: local optimum is usually
achieved

= Global approaches: non-convex quadratic programming (Gurobi)
and moment-sum-of-squares hierarchy (e.g., Mosek)

= No free lunch: global optimality is usually achieved for
small-scale problems only




Literature 20/11/2023

m Y. Kanno, Mixed-integer second-order cone programming for global
optimization of compliance of frame structure with discrete design
variables, Structural and Multidisciplinary Optimization, 54(2):
301-316, 2016, doi: 10.1007/s00158-016-1406-5

m M. Tyburec, J. Zeman, M. Kruzik, and D. Henrion, Global optimality in
minimum compliance topology optimization of frames and shells by
moment-sum-of-squares hierarchy, Structural and Multidisciplinary
Optimization, 64(4):1963-1981, 2021, doi:
10.1007/s00158-021-02957-5




	Finite elements overview
	Compliance minimization:  sizing via optimality criteria
	Compliance minimization:  complementary-strain-energy-based formulation
	Compliance minimization:  potential-energy-based SDP
	Examples

	anm0: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


