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1 Introduction

Viscoelasticity is the property of materials that exhibit both viscous and elastic charac-
teristics when undergoing deformation. Viscous materials, like honey, resist shear flow
and strain linearly with time when a stress is applied. Elastic materials strain instanta-
neously when stretched and just as quickly return to their original state once the stress
is removed. Viscoelastic materials have elements of both of these properties and, as such,
exhibit time dependent strain [5].

This work deals with one-dimensional linear viscoelastic models using Laplace trans-
form that is used for solving differential equations with the great benefit of producing
easily solvable algebraic equations.

2 Theory

2.1 Serial viscoelastic models

Viscoelasticity is the result of the diffusion of atoms or molecules inside a material but
the viscoelasticity models are symbolized with macroscopic object like string and damper
while it is still describing the microscopic material behaviour. One of the models can be
found on Figure 1 describing the series of elastic string and viscous damper.

Figure 1: Serial viscoelastic model

The system shown on Figure 1 can be described with Kinematatics, Equilibrium and
Constitutive equations. It is usefull to express kinematics equations in terms of strain,
thus we can write consistent with the figure that the overall strain is can be expressed as
a sum of individual strains of either string or damper:

ε(t) = εE(t) + εη(t) =
N∑
i=1

εE
i (t) +

M∑
i=1

εηi (t) (1)

where ε can be regarded as overall strain, εE as a strain caused with elastic strings and
similarly εη describes a stress related to viscous dampers.

Next, Equilibrium equations setting balance in the nodes are following:

σ(t) = σE
i (t) = σE

j (t), i = 1, 2, . . . , N and j = 1, 2, . . . ,M (2)

where σ is a stress imposed on the system. Finally, we an write down Constitutive equa-
tions connecting stress and strain that can be expressed as a Hook’s law in the case of
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elastic string. The more complicated situation arises in the case of viscous damper. The
viscous component can be modeled as dashpots that is a mechanical device, a damper
which resists motion via viscous friction. The resulting force is proportional to the veloc-
ity, but acts in the opposite direction, slowing the motion and absorbing energy. Hence,
the constitutive equations for both elastic string and viscous damper are following:

σi(t) = Eiε
E
i (t), i = 1, 2, . . . , N (3)

σi(t) = ηiε̇
η
i (t), i = 1, 2, . . . ,M (4)

where Ei ∈ R+ is elastic stiffness and ηi ∈ R+ is material constant called viscosity (the
set R+ represents strictly positive real numbers).

Using Equations 3 with combination with Equilibrium Equation (2) and Konstitutive
Equation (1) leads to an expression for εE depending only on imposed stress σ:

εE(t) = σ(t)
N∑
i=1

1

Ei

Noting that the sumation in the equation can be expressed with a substitute stiffness E,
it can be rewritten into:

εE(t) = σ(t)
1

E

where
∑N

i=1
1
Ei

= 1
E

.
Analogicaly, the viscous part of the model can be expressed as:

ε̇η(t) = σ(t)
1

η

where
∑M

i=1
1
ηi

= 1
η
.

Thus, it can be said that the system described in this section and shown on Figure
1 is possible to express using two constant, one dealing with the elastic string and the
second with the viscous damper. This system is called Kelvin-Voigt model [1].

3 Laplace transform

In mathematics, the Laplace transform is one of the best known and most widely used
integral transforms. It is commonly used to produce an easily solvable algebraic equation
from an ordinary differential equation.

In mathematics, it is used for solving differential and integral equations. In physics,
it is used for analysis of linear time-invariant systems such as electrical circuits, har-
monic oscillators, optical devices, and mechanical systems. In this analysis, the Laplace
transform is often interpreted as a transformation from the time-domain, in which inputs
and outputs are functions of time, to the frequency-domain, where the same inputs and
outputs are functions of complex angular frequency, or radians per unit time [3].
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The Laplace transform of a function f(t), defined for all real numbers t ≥ 0, is the
function f̂(s), defined by:

L{f(t)} = f̂(s) = lim
α→0−

∞∫
α

f(t)e−stdt (5)

Noting that the limit assures the inclusion of the entire Dirac delta function δ(t) at 0 if
there is such an impulse in f(t) at 0. The parameter s is in general complex: s = a+ ib.

Inverse Laplace transform is given by the following complex integral:

L−1{f̂(s)} = f(t) =
1

2πi

γ+i∞∫
γ−i∞

f(s)estds (6)

where γ is a real number depending on the region of convergence of f̂(s).
This integral transform has a number of properties that make it useful for analyzing

linear dynamic systems. The most important is a linearity of operator:

L{αf(t) + βg(t)} = αL{f(t)}+ βL{g(t)} (7)

and the most significant advantage is that differentiation and integration become mul-
tiplication and division, respectively, by s. Hence, the Laplace transform of functions
derivative is written as:

L
{
ḟ(t)

}
= sf̂(t)− lim

α→0−
f(α), (8)

where the second term limα→0− f(α) denotes an initial condition that is assumed to equal
to zero in the models used in this work, thus this member vanishes and it is not included
in the next text [3].

3.1 Algorithmization of the models

This section provides algorithmization of the viscoelastic models. First of all, the unam-
biguous description of the model that can be processed with a computer is characterized
in Section

3.1.1 Description of the model

A general linear viscoelastic model is composed from the serial strings, described in
Section 2.1. An example of real model is shown in Figure 3. In general case N serial string
and P points that are step-by-step number from 1 to N and from 1 to P respectively is
considered, noting that points are number in given direction in order to clearly determine
direction of forces acting on the points.

Next, the general ith serial string can be described with four values, two of them bi
and ei (bi, ei ∈ {1, 2, . . . , P} and bi < ei) determine the beginning and ending point of
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the string. The two remaining values are elastic and viscous material constant Ei resp.
ηi determining the string. The overall system can be recorded in a table as it is shown
in Table 1.

The model can be extended by enlarging the definition domain of the material param-
eters E and η, assuming that E, η ∈ R+ ∪ {∞}. After definition of a following operation
with the used symbol ∞:

1

∞
def
= 0,

it can be forwarded to situation when one of the parameters is equal to that symbol ∞.
It falls into models where only elastic string or only viscous damper is used. Noting that
it is forbidden to take both of the constants equal to ∞ as it represents the infinitely
rigid model which does not allow any deformation.

Table 1: Table describing the model structure

number of string begin of string end of string stiffness of elastic string viscosity of damper

1 b1 e1 E1 η1

2 b2 e2 E2 η2
...

...
...

...
...

i bi ei Ei ηi

...
...

...
...

...

N bN eN EN ηN

In order to analyse the model, a total stress σ(t) is imposed on a lateral points 1 and
P while the overall strain ε(t) is observed or vice versa. Thus, the object of analysis is
in finding expression between the stress σ(t) and the strain ε(t).

For that purposes, the auxiliary variables are introduced. Unknown stress in the
individual serial string i is marked as σi, where i = 1, 2, . . . , N and unknown strain
between two adjacent points j and j + 1 is called εj,j+1 where j = 1, 2, . . . , P − 1.

3.1.2 Kinematics, Constitutive and Equlibrium Equations

This section contains equations that describe the model. First group of equations is called
Kinematics equation as it puts together the overall strain with strains of adjacent points.
An algebraic equation states as:

P−1∑
j=1

εj,j+1 = ε

This equation can be rewritten using linearity of Laplace transform into following form:

P−1∑
j=1

ε̂j,j+1 = ε̂. (9)
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The second group of equations is called Constitutive equations as it express the rela-
tion between stress of ith string and a related strain corresponding to points where the
string is connected. As stated in Section 2.1, a strain of a serial string is composed of its
elastic and viscous part:

εbi,ei = εE
bi,ei

+ εηbi,ei (10)

where subscripts bi, ei represents the strain between points bi and ei and superscript E, η
label its elastic and viscous part. Next, we know from simple equilibrium that stress in
both elastic and viscous damper is the same:

σi = σE
i = σηi (11)

Hence, it is possible to write constitutive equations for elastic and viscous member as
follows:

εE
bi,ei

=
σi
E

(12)

ε̇ηbi,ei =
σi
η

(13)

In order to eliminate variables εE
bi,ei

and εηbi,ei , it is necessary to provide an other alge-
braic emendations due to the fact that Equation (13) contains derivative. Substitution
Equation (13) and derivative of Equation (12) into derivative of Equation (10) leads to
following expression of constitutive equation of the serial string:

ε̇bi,ei =
σ̇i
E

+
σi
η

(14)

The left side of the equation can be expressed using kinematics equations as a sum of
strains between points bi and ei:

εbi,ei =

ei−1∑
j=bi

εj,j+1 ⇔ ε̂bi,ei =

ei−1∑
j=bi

ε̂j,j+1 ⇔ ε̇bi,ei =

ei−1∑
j=bi

ε̇j,j+1 (15)

Finally, Equation (14) can be rewritten in Laplace transform. Using Equation (15)
and after dividing by Laplace variable s, it follows as:

ei−1∑
j=bi

ε̂j,j+1 = σ̂i

(
1

Ei
+

1

sηi

)
(16)

that is equation in terms of variables introduced at the end of Section 3.1.1.
Last group of equtions is called Equilibrium equations as it set equilibrium in each

point. The following equations stepwise introduce the equilibrium in the first point, inner
points, and the last point:

σ =
P∑
j=1

δibjσj (17)
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P∑
j=1

δibjσj =
P∑
k=1

δiekσk, i = 1, 2, . . . , P − 1 (18)

P∑
k=1

δiekσk = σ (19)

3.2 Setting and solving system of equations

For the sake of algorithmization, it is usefull to write algebraic equations in matrix nota-
tion. Because of lucidity, necessery equations, that are described in previous section, are
again rewritten in the order that are used in the matrix:

−
ei−1∑
j=bi

ε̂j,j+1 + σ̂i

(
1

Ei
+

1

sηi

)
= 0, i = 1, 2, . . . , N (20)

−
P∑
j=1

δibj σ̂j + σ̂ = 0 (21)

P∑
j=1

(δibj − δiej)σ̂j = 0, i = 1, 2, . . . , P − 1 (22)

−
P∑
k=1

δiek σ̂k + σ̂ = 0 (23)

−
P−1∑
j=1

ε̂j,j+1 + ε̂ = 0 (24)

Next, the matrix notation of those equations looks like:

Ax = o (25)

where an array o is a nil vector:

o =
{

0 0 . . . 0
}T

,

next, an array x is a vector of variables:

x =
{
ε̂1,2 ε̂2,3 . . . ε̂P−1,P σ̂1 σ̂2 . . . σ̂N σ̂ ε̂

}T
and finally, an array A is a matrix whose elements are rational functions:

A ∈ R(N+P+1)×(P+N+1), R =

{
y(x) =

∑n
i=0 aix

i∑m
i=0 bix

i
, ai, bi ∈ R

}



3 LAPLACE TRANSFORM 8

and finally the general form of matrix A looks as follows:

A =



−v1
b1e1

−v2
b1e1

· · · −vP−1
b1e1

1
E1

+ 1
sη1

0 · · · 0 0 0

−v1
b2e2

−v2
b2e2

· · · −vP−1
b2e2

0 1
E2

+ 1
sη2

· · · 0 0 0
...

...
. . .

...
...

...
. . .

...
...

...

−v1
bNeN

− v2
bNeN

· · · −vP−1
bNeN

0 0 · · · 1
EN

+ 1
sηN

0 0

0 0 · · · 0 −δ1,b1 −δ1,b2 · · · −δ1,bN 1 0

0 0 · · · 0 ∆2
b1,e1

∆2
b2,e2

· · · ∆2
bN ,eN

0 0
...

...
. . .

...
...

...
. . .

...
...

...

0 0 · · · 0 ∆P−1
b1,e1

∆P−1
b2,e2

· · · ∆P−1
bN ,eN

0 0

0 0 · · · 0 −δP,e1 −δP,e2 · · · −δP,eN 1 0

−1 − 1 · · · −1 0 0 · · · 0 0 1


The functions occurring in the matrix A are defined as follows:

vkbi,ei =

{
1, if bi ≤ k ≤ ei − 1

0, otherwise
, where i = 1, 2, . . . , N

∆k
bi,ei

= δk,bi − δk,ei , where i = 1, 2, . . . , N.

Next, the constructed Equation (25) is solved using Gaussian elimination [2] that
transfers the matrix A into row echelon form1. It can be shown that one of the Equi-
librium equations can be expressed as a linear combination of the others, thus after the
Gaussian elimination the last row of matrix A is identically equal to zero. Then, the
equation getting from the (P +N)th row of matrix A looks like:

σ̂AN+P,P+N = ε̂AN+P,P+N+1 ⇔ σ̂ =
AN+P,P+N+1

AN+P,P+N

ε̂ ⇔

σ̂ = E ε̂, where E =
AN+P,P+N+1

AN+P,P+N

(26)

that express the relation between the total stress and overall strain in Laplace transform.

3.3 Stress relaxation and creep

Next step is an analysis of Equation (26) that primarily depends on knowledge of either
the strain function ε(t) or stress function σ(t). As the expression of either function is
known, it can be convert using Laplace transform and next inverse Laplace transform
produces the expression of second function.

Some phenomena in viscoelastic materials are:

1In linear algebra a matrix is in row echelon form (sometimes called row canonical form) if all nonzero
rows are above any rows of all zeroes, and the leading coefficient of a row is always strictly to the right
of the leading coefficient of the row above it [4].
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• if the stress is held constant, the strain increases with time. It is called creep and
the expression for stress function is following:

σ(t) = σ0H(t) (27)

where σ0 is constant and H(t) is called Heaviside or unit step function defined as:

H(t) =

{
0, for t < 0

1, for t ≥ 0

• if the strain is held constant, the stress decreases with time It is called relaxation
and the expression for strain function is following [5]:

ε(t) = ε0H(t) (28)

where ε0 is konstant.
Next, we can perform Laplace transform on Equation (27) and (28) that heads to:

σ̂(s) =
σ0

s
(29)

ε̂(s) =
ε0

s
(30)

After substitution of Equations (29) and (30) into Equation (26), it heads to:

σ̂(s) =
Eε0

s
(31)

ε̂(s) =
σ0

sE
(32)

Inverse Laplace transform used on those two equations follows as:

σ(t) = ε0L−1

{
E
s

}
(33)

ε(t) = σ0L−1

{
1

sE

}
(34)

that express the stress function for relaxation and strain function for creep. The product
of inverse Laplace transform in the case relaxation (Equation (33)) is marked as:

R0(t) = L−1

{
E
s

}
(35)

and it is called relaxation function. In the case of creep, the inverse Laplace transform
in Equation (34) is called compliance function:

J0(t) = L−1

{
1

sE

}
. (36)
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A relationship between relaxation function stated in Equation (35) and compliance
function stated in Equation (36) is a quite complicated. The different situation is in the
case of Laplace transforms. Thus Equations (35) and (36) leads to:

E = sL−1 {R0(t)}

E =
1

sL−1 {J0(t)}

These two equations have to be equal to each other, thus we can write the relationship
between relaxation function and compliance function in the terms of Laplace transform:

L{J0(t)} =
1

s2L{R0(t)}

Now, we can discuss the inverse Laplace transform of used functions. We can noticed
that the term E has to be from the set of all rational functions R and thus it can be
decomposed using partial fractions. Then the function E can be expressed as linear
combination of following terms:

Pn(s),
a

s+ b
,

cs+ d

s2 + es+ f
,

g

s2 + hs+ i

where Pn(s) is a polynomial function of order n and a, b, c, d, e, f, g, h, i are constants.
The inverse Laplace transform of those expressions is well known, thus all of the models
discussed in this work can expressed using basis functions.
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4 Application to real viscoelastic models

This section shows illustration of the algorithm on two models. The first model is called
Standard linear solid model that is well analysed and described in literature. It is chosen
in order to show functionality of the algorithm. The second model is selected randomly
and is a more complicated than the previous one.

4.1 Standard linear solid model

The sketch of the Stadard linear solid model with all of the parameters is shown in Figure
2. For the next analysis, it is necessary to describe the model with the Table 2 as it is
introduced in Section 3.1.1.

Figure 2: Sketch of a Standard linear solid model

Table 2: Input table of the Standard linear solid model

number of string begin of string end of string stiffness of elastic string viscosity of damper

1 1 2 E1 η1

2 1 2 E2 ∞

Next, it is necessary set the system of equations Ax = o as it is described in Section
3.2: 

−1 1
E1

+ 1
η1s

0 0 0

−1 0 1
E2

0 0

0 −1 −1 1 0
0 −1 −1 1 0
−1 0 0 0 1



ε1,2

σ̂1

σ̂2

σ̂
ε̂

 =


0
0
0
0
0


Next, it is necessary to provide Gauss elimination that heads to matrix A in the
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following form:

A =



−1 1
E1

+ 1
η1s

0 0 0

0 −η1s+E1

E1η1s
1
E2

0 0

0 0 −E2η1s+E2E1+E1η1s
(η1s+E1)E2

1 0

0 0 0 − η1s+E1

E2η1s+E2E1+E1η1s
1

0 0 0 0 0


The last equation is identically equal to zero thus the last but one equation put together
overall strain and stress in terms of Laplace transform:

σ̂ = E ε̂ where E =
E2η1s+ E2E1 + E1η1s

η1s+ E1

Then it is possible to analyse relaxation and creep. As it is described in Section 3.3 relax-
ation and compliance function respectively are calculated using inverse Laplace transform
heading to:

R0(t) = L−1

{
E
s

}
= E1 e

−E1t
η1

+E2

J0(t) = L−1

{
1

sE

}
=
E1 + E2 − E1 e

− E2E1t
(E1+E2)η1

E2(E1 + E2)

4.2 Example of solution for arbitrary model

This section provide analysis of randomly chosen model. The sketch of the model is
shown in Figure 3.3 and analogically to previous case Table 3 determines the model in a
form that can be easily processed.

Figure 3: Sketch of a model
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Table 3: Input table of the model

number of string begin of string end of string stiffness of elastic string viscosity of damper

1 1 2 E1 η1

2 1 3 E2 η2

3 2 3 ∞ η3

4 2 4 E4 η4

5 4 5 E5 ∞

6 3 5 E6 ∞

Next, Table 3 is used to set the system of equations Ax = o with coefficents matrix
A in the following form:

A =



−1 0 0 0 1
E1

+ 1
η1s

0 0 0 0 0 0 0

−1 −1 0 0 0 1
E2

+ 1
η2s

0 0 0 0 0 0

0 −1 0 0 0 0 1
η3s

0 0 0 0 0

0 −1 −1 0 0 0 0 1
E4

+ 1
η4s

0 0 0 0

0 0 0 −1 0 0 0 0 1
E5

0 0 0

0 0 −1 −1 0 0 0 0 0 1
E6

0 0

0 0 0 0 −1 −1 0 0 0 0 1 0

0 0 0 0 1 0 −1 −1 0 0 0 0

0 0 0 0 0 1 1 0 0 −1 0 0

0 0 0 0 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 0 0 −1 −1 1 0

−1 −1 −1 −1 0 0 0 0 0 0 0 1


Next, the Gaussian elimination find general expression between overall stress and

strain in term of Laplace transform but the expression is a quite complicated. For the
purposes of good arrangement the material constants of the model are taken identically
equal to one:

E1 = E2 = E4 = E5 = E6 = η1 = η2 = η3 = η4 = 1.

Then, an expression of the second equation from the end (as the last is identically equal
to zero) states:

σ̂ = E ε̂, where E =
s (6 s2 + 13 s+ 5)

7 s3 + 19 s2 + 14 s+ 3
.

Finally, we can find compliance and relaxation function respectively using inverse
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Laplace transform.

J0(t) = L−1

{
1

sE

}
= L−1

{
7s3 + 19s2 + 14s+ 3

s2(6s2 + 13s+ 5)

}

R0(t) = L−1

{
E
s

}
= L−1

{
6s2 + 13s+ 5

7s3 + 19s2 + 14s+ 3

}
The main role plays a decomposition into partial fractions that is bases on finding roots
of polynomial function in denominator of 1

sE or E
s

in the case of compliance function or
relaxation function respectively. Finally, expressions for both functions are following:

J0(t) =
31

25
+

3t

5
− 1

525
e−

5t
3 − 1

14
e−

t
2

R0(t) = − 1

257

∑
i∈A

(217i2 + 378i+ 25)e−it

where the sum is over the three element set A = {x ∈ R; 7x3 + 19x2 + 14x+ 3 = 0}.
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5 Conclusion

This work provides a description of algorithm for analysing viscoelastic models using
Laplace transform. The aim is not provide exhausted source of information dealing with
this problem as it include a large area of mathematical problems but it shows the main
problems related to this area.

The next work could be done in optimizing algorithm for the use of more complicated
models, further the calculation of relaxation and creep could be extended with harmonic
stress or strain loading.
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A Appendix

A.1 MATLAB algorithm returning stress relaxation and creep
function

function [J,R]=viscoelasticity(B)

%function that calculate stress relaxation function and creep

%% input

syms s

%% MATRIX SETTINGS_V2

[N,n]=size(B);

P=max(max(double(B(:,[1,2]))));

B1=double(B(:,[1,2]));

%setting A1

A1=zeros(N,P-1);

for i=1:N

A1(i,[B1(i,1):B1(i,2)-1])=-1;

end

%setting A2

A2=sym(zeros(N,N+2));

for i=1:N

A2(i,i)=1/B(i,3)+1/(B(i,4)*s);

end

%setting A3

A3=zeros(P,P-1);

%setting A4

A4=zeros(P,N+2);

A4(1,:)=[-kronecker(ones(1,N),B1(:,1)’),1,0];

for i=2:P-1

A4(i,1:N)=kronecker(i*ones(1,N),B1(:,2)’)...

-kronecker(i*ones(1,N),B1(:,1)’);

end

A4(P,:)=[-kronecker(P*ones(1,N),B1(:,2)’),1,0];

%setting A5

A5=[-ones(1,P-1),zeros(1,N),0,1];

%setting A

A=[A1,A2;A3,A4;A5];

clear A1 A2 A3 A4 B1 i m n

%% Gauss elimination

[G]=gauss(A);

%% inverse Laplace transform

C=-G(P+N,P+N)/G(P+N,P+N+1);

if (isequal(class(C),’sym’)==1)&&(isequal(findsym(C,1),’s’)==1)

syms t
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J=ilaplace(C/s,s,t);%compliance function

R=ilaplace(1/(s*C),s,t);%relaxation function

end

end

A.2 MATLAB algorithm of Gaussian elimination

function [G]=gauss(A)

%gauss elimination

[m,n]=size(A);

j=1; %column

k=1; %row

if isequal(class(A),’sym’)

while (k<m)&&(j<=n)

%urceni prvniho clenu

index=find(A(k+1:m,j)~=0);

if (A(k,j)==0)&&isequal(index,[])

j=j+1;

continue

elseif A(k,j)==0

A([k,k+index(1)],:)=A([k+index(1),k],:);%swaping of rows

index=index(2:length(index)); %row

end

for i=k+index %row

A(i,:)=simplify(A(i,:)-A(i,j)/A(k,j)*A(k,:));

end

j=j+1;

k=k+1;

end

else

while (k<m)&&(j<=n)

%urceni prvniho clenu

index=find(A(k+1:m,j)~=0);

if (A(k,j)==0)&&isequal(index,[])

j=j+1;

continue

elseif A(k,j)==0

M([k,k+index(1)],:)=M([k+index(1),k],:);%swaping of rows

index=index(2:length(index)); %row

end

for i=k+index %row

A(i,:)=A(i,:)-A(i,j)/A(k,j)*A(k,:);

end
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j=j+1;

k=k+1;

end

end

G=A;

end
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