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aDepartment of Structural Mechanics, Faculty of Civil Engineering, Czech
Technical University in Prague, Thákurova 7, 166 29, Prague 6, Czech Republic

Abstract

A simple procedure is presented for the determination of a Periodic Unit Cell (PUC)
for plain weave fabric composites with reinforcement imperfections. Geometrical pa-
rameters of the PUC are determined so that the resulting PUC resembles the real
geometry of a composite, obtained from digitized micrographs of plain weave cross-
sections, as close as possible. As the first step, the morphology of a real composite is
described by appropriate statistical descriptors. Then, the parameters of the ideal-
ized unit cells follow from minimization of the objective function defined as the least
square difference of the statistical descriptor related to the original microstructure
and to the idealized unit cell, respectively. Once the desired geometrical parameters
are determined, the Finite Element model of a woven composite is formulated and
used to predict the overall response of the composite by the numerical homogeniza-
tion method. The quality of the resulting unit cells is addresses from the point of
view of effective elastic properties to examine the applicability and limitations of
this procedure and to provide modelling strategy for analysis of real world material
systems.

Key words: woven composites, periodic unit cell, reinforcement imperfections,
microstructural statistics, stochastic optimization, numerical homogenization

1 Introduction

The remarkable material properties offered by composite materials such as
high strength, light weight, corrosive resistance and affordability, etc., have
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resulted in their use in diverse high-performance engineering applications.
Among the most prominent material systems complying with the aforemen-
tioned requirements remain polymer matrix systems reinforced either by aligned
fibers, whiskers or fabrics. The popularity of latter materials, in particular, is
under continuous rise due to advantageous strength/weight ratio, easiness of
manipulation and low production costs.

The complex three-dimensional structure of woven fabric composites, however,
makes the analysis and prediction of the overall properties of these material
system a relatively difficult task. A number of simplified analytical approaches
has been proposed to obtain inexpensive closed-form estimates of the overall
behavior of such material systems, starting from modified classical laminate
theories approach initiated by Ishikawa and Chou [1,2] for simplified models of
geometry and further extended by, e.g., Naik and Shembekar [3]. Alternative
methods start from the classical energy principles, see, e.g., Kregers and Mal-
bardis [4] and Pastore and Gowayed [5]. An application of the Mori-Tanaka
method to the determination of overall elastic properties of composite was
presented by Gommers et al. [6].

In the last decade, the finite element-based methods has been employed for
the analysis of woven fabric composites. In theory, the structure of woven
composites can be fully described by clearly defined periodic unit cell, which
makes asymptotic homogenization techniques rather attractive for the analy-
sis of these materials. The numerical analysis of woven composites originated
from the pioneering works of Zhang and Harding [7] for a simplified two-
dimensional model and by Paumelle at al. [8,9] for a fully three-dimensional
behavior. These studies were further followed and extended by, e.g., Das-
gupta and Bhandarkar [10], Chapman and Whitcomb [11] and Whitcomb and
Sriregan [12]. For a more detailed discussion, overview and comparison of dif-
ferent methods see, e.g., reviews by Cox and Flanagan [13], Byström et al. [14]
and Chung and Tamma [15].

Although all the above analyses rely on the idealized geometry of woven fabric
composites, it is well-understood that the collective properties of these mate-
rials are to a great extent influenced by imperfections developed during the
fabrication process. In this context the waviness, misalignment and/or non-
uniform cross-sectional aspect ratio of tows in the longitudinal direction play
the main role in assessing the overall behavior of such material systems. In
this regard, the formulation of a reliable and accurate numerical model is of
paramount importance. Note that simplified models of geometry, which do
not account for reinforcement imperfections, are not valid even for carefully
prepared laboratory samples, see Fig. 1.

On the experimental level, the effects of woven path imperfections were qual-
itatively investigated in several works, see, e.g., Breiling and Adams [16],
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Fig. 1. An example of textile composite micrograph. Courtesy of B. Košková, Tech-
nical University of Liberec

Košek and Košková [17], Košková and Vopička [18], Roy [19] and Yurgar-
tis et al. [20]; the systematic classification and discussion of sources of indi-
vidual types of imperfection can be found in Pastore [21]. On the analytical
level, these issues were incorporated into the framework of laminate theories
by Shembekar and Naik [22] who introduced a possible shift of individual lay-
ers in their model and in works of Yushanov and Bogdanovich [23,24], who
considered a general random imperfections to the tow path and used the stiff-
ness averaging method to obtain statistics on the overall elastic moduli. For
the numerical analyses of this phenomenon see the works of Woo and Whit-
comb [25] for the three-dimensional geometry of the woven fabric composite
and Byström et al. [14,26] for a simplified two-dimensional model where the
influence of relative shift of individual layers was carefully investigated.

In the present work, a different strategy is adopted to incorporate, at least
to some extent, the reinforcement imperfections into the geometrical model of
the unit cell. In particular, we follow the path set in papers by Povirk [27] and
by Zeman and Šejnoha [28]. In theses works, the idealized geometrical model
of the analyzed composite is defined in terms of a certain periodic unit cell
with geometrical parameters derived by matching microstructural statistics
of a real microstructure and the searched PUC. For two-dimensional binary
microstructures, the efficiency of this approach was numerically demonstrated
for composites with elastic [27,28], linearly viscoelastic [29], non-linearly vis-
coelastic [30] and viscoplastic [31] phases. Moreover, using the model of plain
weave geometry proposed by Kuhn and Charalambides [32] in combination
with binary images of real composites, this modeling strategy can be extended
to the modeling of woven composites in rather straightforward way.

The subject of the present work is closely related to recent papers on the prob-
lems of reconstructing random media with specified microstructural functions.
In particular, Rintoul and Torquato [33] proposed a method for the reconstruc-
tion of particulate systems based on the radial distribution function combined
with the Simulated Annealing Method. This work was further extended by
Yeong and Torquato [34], where the isotropized lineal path and the two-point
probability functions were used in the reconstruction process; the problems of
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three-dimensional microstructures reconstruction from two-dimensional cross-
sections [35] and real-world materials [36,37] were also considered. The im-
portance of using non-isotropized descriptors was recognized and addressed
in [38] and further extended in [39], where the hexagonal grid sampling was
advocated. Finally, the recent work of Rozman and Utz [40] revealed that the
non-uniqueness problems, reported in previous studies, can be, to a great ex-
tent, attributed to artificial isotropy of optimized function and to convergence
of the selected optimization method to a local minimum.

The rest of the paper is organized as follows. Section 2 briefly reviews quan-
tification of microstructure morphology and describes the algorithms used for
the analysis of the digitized microstructural images. Section 3 then introduces
the geometrical model used in the current work, formulates the optimization
problem to be solved and presents the used optimization algorithm. Section 4
demonstrates the application of these principles to two-layer composites with
misaligned layers and addresses the quality of the unit cell from the point
of view of their effective elastic properties to explore the applicability of the
presented approach. The paper ends with a brief discussion of the extension
and future development of the presented procedure.

In the following text, a, a and A denote a vector, a symmetric second-order
and a fourth-order tensor, respectively. The standard summation notation is
adopted, i.e., by A : b we denote the sum Aijklbkl while a · b stands for aibi,
where the summation with respect to repeated indices is used. The symbol
{a} is reserved for a column matrix or a vectorial representation of symmetric
second-order tensor while the notation [L] is employed for a matrix represen-
tation of a fourth-order tensor [41,42]. Finally, for all arrays, the C language-
style indexing is used, i.e., the first entry on an one-dimensional array a with
dimension N is denoted a0 while the last entry of the array is denoted as aN−1.

2 Microstructure description

This section outlines evaluation of various statistical descriptors, which arise
in the analysis of two-phase media with random arrangement of individual
phases. With regard to application of these principles to the analysis of two-
dimensional sections of plain weave composites we focus on capturing the
non-isotropy of the underling microstructure. For a more detailed discussion
on quantification of microstructure morphology, see the recent monograph of
Torquato [43].

4



2.1 n-point probability functions

To reflect a random character of a heterogeneous medium it is convenient to
introduce a sample space S defined as a collection of samples α with p(α)
defining the probability density of α in S. To provide a general description
of morphology of such media we consider a characteristic function of the r-th
phase χr(x, α) defined as

χr(x, α) =

 1, if x ∈ Dr(α),

0, otherwise,
(1)

where Dr(α) denotes the domain occupied by the r-th phase. The n-point
probability function Sr1,...,rn is then given by

Sr1,...,rn(x1, . . . ,xn) =
∫
S

χr1(x1, α) · · ·χrn(xn, α)p(α) dα. (2)

In the following, we limit our attention to functions of the order of one and
two, since higher-order functions are quite difficult to determine in practice.
Therefore, description of a random medium will be restricted to the informa-
tion contained in the one-point probability function Sr(x) and the two-point
probability function Srs(x1,x2), respectively.

Assuming the statistical homogeneity of the analyzed medium and validity
of the ergodic hypothesis, the one and two-point probability functions reduce
to [43,44]

Sr = cr, Srs(x) =
1

|V |
∫

V
χr(x, α)χs(x + y, α) dy, (3)

with cr denoting the volume fraction of the r-th phase and |V | standing for
the volume (area) of the analyzed sample.

Various sampling methods can be employed to determine the values of one-
and two-point probability functions, starting from simple Monte-Carlo based
techniques, later refined by the sampling template approach [45] to sample
isotropized values of two-point probability functions. However, in order to
avoid well-known problems with using isotropized values in random media
reconstruction [39,37,40], the Fourier-transform procedure [46] is employed in
the present work to sample the two-point probability function. To this end, we
consider a discretization of the microstructure in terms of W ×H bitmap and
denote the pixel located in the i-th row and j-th column as χr(i, j). Assuming
the microstructure periodicity, Eq. (3) can be replaced by
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Sr =
1

WH

W−1∑
i=0

H−1∑
j=0

χr(i, j), (4)

Srs(m, n)=
1

WH

W−1∑
i=0

H−1∑
j=0

χr(i, j)χs((i + m)%W, (j + n)%H), (5)

where a % b stands for a modulo b. The sum (5) can be then replaced by the
Discrete Fourier transform as

Srs(m, n) =
1

WH
IDFT{DFT{χr(m, n)}DFT{χs(m, n)}}, (6)

where · denotes the complex conjugate and DFT{·}, IDFT{·} stand for the
Discrete Fourier Transform and its inverse, respectively.

Of course, the Fast Fourier Transform, which needs only O(WH log(WH) +
WH) operations compared to the O(W 2H2) operations needed by Eq. (5), is
called to carry out the numerical computation. Moreover, the possibility of
using highly optimized software libraries permits to efficiently analyze even
high-resolution bitmaps within a reasonable time.

2.2 Lineal path function

As already noted in the previous section, the determination of probability
functions of order higher than two encounters serious difficulties, both analyt-
ical and numerical. However, these functions still contain important amount
of information not correctly captured by low-order probability functions. To
overcome this difficulty, one can study low-order microstructural descriptors
based on a more complex fundamental function which contains more detailed
information about phase connectedness and hence certain information about
long-range orders. The lineal path function [47], briefly discussed in this sec-
tion, is a representative of such indicators.

To maintain formal similarity with the discussion of the n-point probability
functions, we first introduce a random function λr(x1,x2, α) as

λr(x1,x2, α) =

 1, if x1x2 ⊂ Dr(α),

0, otherwise,
(7)

i.e., a function which equals to one when the segment x1x2 is contained in
the r-phase for the sample α and equals to zero otherwise. The lineal path
function [47], giving the probability that the x1x2 segment is fully contained in
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the phase r, then follows directly from the ensemble averaging of this function

Lr(x1,x2) =
∫
S

λr(x1,x2, α)p(α) dα. (8)

Under the assumptions of statistical homogeneity, the lineal path function
simplifies, in analogy with the two-point probability function, as

Lr(x1,x2) = Lr(x1 − x2). (9)

Similarly to the n-point probability function, an elementary Monte Carlo-
based simulation procedure can be used again for the evaluation of lineal path
function, i.e., we randomly throw segments into a medium and count the cases
when the segment is fully contained in a given phase. Computationally more
intensive approach, however, can be employed following the idea of sampling
template introduced in [45].

∆

∆

T

TW

W

H

H

Fig. 2. An example of sampling template

To that end, we form a sampling template with dimensions TW × TH pixels.
Then, we draw Nd segments, each of them consisting of N`(i) pixels, from the
center of a template to the points on the template boundary separated by
given discrete steps ∆W and ∆H (see Figure 2). Sampling the values of the
the lineal path function for given direction and phase starts from placing the
template center at a given point found in the phase r and then marking the
pixel at which the segment corresponding to the selected direction meets the
other phase. Then, counters corresponding to pixels of a given segment which
are closer to the center than the marked pixel are increased by one while the
remaining ones are left unchanged. The value of the lineal path function can
be then obtained either by stochastic sampling (randomly throwing template
center in a medium) or deterministic sampling (template center is successively
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placed in all pixels of a bitmap) and averaging the obtained results. Moreover,
the latter method allows us to actually use only a half of the sampling tem-
plate, provided that the analyzed microstructure is statistically homogeneous.
Note that even though this procedure basically needs only integer-based op-
erations, it is still substantially slower than the FFT-based approach. Hence,
a relatively sparse sampling template is unavoidable if one wishes to keep the
efficiency of this procedure comparable to the determination of the two-point
probability function.

3 Unit cell definition

As suggested in the introductory part, a realistic model of composite geome-
try is needed in order to obtain reliable estimates of both the local and overall
response of real composites under certain loading conditions. However, such
a model, to be statistically representative of the composite, might be quite
complex leading to an enormous computational cost. The computational fea-
sibility, on the other hand, calls for rather simple models usually specified in
terms of small periodic unit cells. The present section attempts to reconcile
these competing requirements by formulating a small periodic unit cell, which
yet incorporates the knowledge of real composite geometry with various types
of reinforcement imperfections.

3.1 Geometrical model

In this contribution, only the irregularities represented by disordered path of
the fiber tow are considered. In general, such imperfections can be quantified
by taking two-dimensional images of a tow cross-section along its longitu-
dinal axis; i.e. we attempt to approximate three-dimensional microstructure
on the basis of two-dimensional data. Although techniques for constructing
three dimensional microstructural images have been recently introduced [48–
50, and references therein], they are rather laborious and extremely computa-
tionally demanding even for elastic materials. Moreover, it was demonstrated
in [35,36,51] that, at least for some classes of materials, the data obtained
from two-dimensional sections allow reconstructing the three-dimensional mi-
crostructural configurations with satisfactory details.

Literature offers a manifold of geometric models for the description of plain
weave geometry with varying level of sophistication. In this work, the model of
fabric weave composite proposed by Kuhn and Charalambides [32] is used since
it is reasonably simple to implement and directly incorporates typical features
of real composites reported in [20]. The present model is fully determined by
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four parameters a, b, g and h, see Fig. 3. For the sake of completeness, a brief
discussion of the geometrical model is included in Appendix A; in this section,
we restrict our attention to two-dimensional cross-sections located in the xz
plane.
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Fig. 3. Geometrical parameters of a plain weave PUC

For the transverse cross-sectional plane located in the middle of the weave,
the fill and warp bundle surface functions sfill and swarp, Eq. (A.8), reduce to,
see Fig. 3,

slow(x) =


b

2

(
sin

(
πx

a

)
− x(1 − δ)

g
− 1

2
(1 + δ)

)
0 ≤ x <

g

2

− b

2

(
1 + (1 + β) sin

(
π(2x − g)

2(a − g)
− β

))
g

2
≤ x ≤ a

2

, (10)

sup(x) =


b

2

(
sin

(
πx

a

)
− x(1 − δ)

g
+

1

2
(1 + δ)

)
0 ≤ x <

g

2
b

2

(
sin

(
πx

a

)
+ δ

)
g

2
≤ x ≤ a

2

, (11)

where coefficient β is defined in Eq. (A.4) and δ = (1 + β) cos(β). Values of
function slow and sup for x > a/2 and x < 0 follow from obvious symmetry of
the PUC.

3.2 Objective function

Having chosen the model for the description of the geometry of a PUC, one
needs to define a certain objective function, which quantifies the difference
between the original microstructure and the idealized periodic unit cell. Fol-
lowing the general procedure discussed in Section 2, the fundamental bundle
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characteristic function χf (x, z, α) is simply provided by the relation

χf(x, z, α) =


1, if slow(x) ≤ z ≤ sup(x) for sample α

0, otherwise.
(12)

This characteristic function χf can be employed to discretize the PUC cross
section into the form of a W × H bitmap. Then, assuming the periodicity of
the microstructure, the two point probability function follows from Eq. (6).
Similarly, the matrix lineal path function Lm for a given digitized periodic
unit cell can be determined by the sampling template method introduced in
Section 2.2.

To determine “statistically” optimal parameters of the periodic unit cell, the
parameters a, b, g and h are found by minimizing certain objective functions.
Similarly to [34,35,37], objective functions incorporating the two-point matrix
probability function Smm, matrix lineal path function Lm or their combination
are considered,

FS(x) =
imax∑

i=−imax

jmax∑
j=−jmax

(
Smm(i, j) − Smm(i, j)

)2
, (13)

FL(x) =
Nd−1∑
i=0

N`(i)−1∑
j=0

(
Lm(i, j) − Lm(i, j)

)2
, (14)

FS+L(x) =FS(a, b, h, g) + FL(a, b, h, g), (15)

where x = {a, b, h, g}T is the vector of unknown dimensions of the PUC,
Smm and Lm are the values of Lm and Smm functions corresponding to the
target microstructure, parameters imax and jmax define the range of points,
in which Smm functions are matched, Nd denotes the number of rays of a
sampling template and N`(i) is the number of pixels of the i-th sampling ray,
respectively. Then, the following optimization problem is to be solved in order
to determine the optimal parameters of a periodic unit cell:

Optimal plain weave periodic unit cell. For a selected statistical
descriptor D ∈ {S, L, S + L} find the parameters of the PUC x such that

x ∈ Argmin
x∈B

FD(x), (P)

where B denotes a set of admissible unit cell parameters,

B =
{
x ∈ R

4 : Li ≤ xi ≤ Ui, i = 1, . . . , N
}

, (16)

where Li and Ui denote the lower and upper bounds on unit cell parame-
ters, selected, e.g., on the basis of image analysis.
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The numerical experiments reported in [52] allow us to anticipate that the
RASA algorithm, briefly described in the next section, is fully capable of
solving this optimization problem.

3.3 Optimization algorithm

As demonstrated in [30,52], the objective functions (13)–(15) are discontinuous
with a large number of local plateaus. This is a direct consequence of work-
ing with bitmap images with a limited resolution. Such objective functions
cannot be directly treated by classical optimization algorithms. In our pre-
vious works [28,52,53], evolutionary algorithms showed themselves to be able
to solve similar problems quite efficiently. Based on these results, the Real-
encoded Augmented Simulated Annealing method is implemented to solve the
present tasks. This method is the combination of two stochastic optimization
techniques – genetic algorithm and the parallel simulated annealing [54]. It
uses basic principles of genetic algorithms (a population of possible solutions
(individuals), instead of one, is optimized, individuals are successively sub-
jected to selection and recombination by genetic operators according to the
value of their objective function (fitness)), but controls replacement of par-
ents by the Metropolis criterion (see Eq. (18)). This increases the robustness
of the method, since it allows a worse child to replace its parent and thus
escape from local minima, which is in contradiction with the classical opti-
mization methods. An interested reader may find further information on this
subject, e.g., in [55,56]. The algorithmic scheme of the present implementation
is briefly summarized as follows.

(1) Randomly generate an initial population and assign fitness to each indi-
vidual. Initial temperature is set to T0 = Tmax = T_fracFavg and minimal
temperature is determined as Tmin = T_frac_minFavg, where Favg is the
average fitness value of the initial population.

(2) Select an appropriate genetic operator. Each operator is assigned a certain
probability of selection.

(3) Select an appropriate number of individuals (according to the operator)
and generate possible replacements. To select individuals, we apply the
normalized geometric ranking scheme. The probability of selection of the
i-th individual is given by

pi = q′(1 − q)r−1, q′ =
q

1 − (1 − q)P
, (17)

where q is the probability of selecting the best individual in the popula-
tion, r is the rank of the i-th individual with respect to its fitness, and P

is the population size.
(4) Apply operators to selected parent(s) to obtain possible replacement(s).
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4a Look for an identical individual in a population. If such an individual
exists, it is replaced by a new one. This operation increases the diver-
sity of a population and thus decreases the chance of falling into a local
minimum.

4b Replace an old individual if

u(0, 1) ≤ exp (F (Iold) − F (Inew)) /Tt, (18)

where F (·) is the fitness of a given individual, Tt is the actual temperature
and u(·, ·) is a random number with the uniform distribution on a given
interval.

(5) Steps 2–3 are performed until the number of successfully accepted individ-
uals reaches success_max or selected number of steps reaches counter_max.

(6) Decrease temperature
Tt+1 = T_multTt.

If actual temperature Tt+1 is smaller then T_min, perform reannealing –
i.e. perform step #1 for one half of the population.

(7) Steps 2–6 are repeated until the termination condition is attained.

The detailed description of this algorithm, list of used operators as well as
some tests of its performance can be found in [53,57]. See also [30] for values
of individual parameters of this method for the current optimization problems.

4 Numerical experiments

In this section, the performance and robustness of the selected global optimiza-
tion method is investigated for a set of carefully chosen optimization problems.
First, the ability of the algorithm to determine the parameters of a periodic
unit cell with known parameters is investigated. Then, optimal unit cells are
generated for artificial microstructures exhibiting layer shifts observed in mi-
crographs of real composites. Finally, the quality of the resulting periodic unit
cell is judged from the point of view of effective elastic properties derived from
the numerical homogenization procedure.

4.1 Identification problem

To test sensitivity of the optimization process with respect to the bitmap
resolution, three different bitmaps with dimensions 128 × 16, 256 × 32 and
512 × 64 pixels were constructed for a unit cell corresponding to parameters
a = 10, h = 3, g = b = 1. For each bitmap the optimization algorithm was run
20 times to minimize the influence of various random circumstances. The com-
putation was terminated if the algorithm returned a value smaller than 10−6
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or if the number of objective function evaluations exceeded 50,000. Bounds
of individual parameters were set to 50% and 200% of the target values. The
Smm-based objective function was considered first. The matching range imin–
imax and jmin–jmax, introduced in Eq. (13), was set to comply with the dimen-
sion of a unit cell. For each run, minimum and maximum values of searched
geometric parameters were recorded. The results of this experiment are listed
in Tables 1 and 2. In addition, Table 1 provides information on the average
number of function calls and the relative time needed to complete the opti-
mization run for individual bitmaps 1 . Notice that the optimization process
converged for every run, which confirms the robustness of the RASA algo-
rithm. A typical convergence progress of the optimization method, showing
an average and the best individual in the population, is displayed, together
with the PUC evolution, in Figs. 4a–b.

Bitmap Success Number of func. eval. Total time

resolution rate Min Avg Max [s]

128 × 16 20 / 20 1 106 2 826 6 321 116

256 × 32 20 / 20 2 336 3 542 5 320 1 016

512 × 64 20 / 20 2 716 4 581 12 457 6 648
Table 1
Smm-based identification: Number of function evaluations

Resolution amin amax hmin hmax

128 × 16 9.8442 10.1010 2.9961 3.0119

256 × 32 9.9253 10.0217 2.9959 3.0020

512 × 64 9.9726 10.0259 2.9986 3.0009

Resolution bmin bmax gmin gmax

128 × 16 0.9924 1.0065 0.9688 1.1010

256 × 32 0.9968 1.0002 0.9831 1.0141

512 × 64 0.9988 1.0009 0.9917 1.0157
Table 2
Geometrical parameters of the PUC : Smm-based optimization

In general, see Table 1, the number of required iterations as well as the time
needed for convergence increases with the bitmap resolution. Nevertheless, all

1 All reported tests were performed on a computer with Intel Celeron 700 MHz
processor with 256MB RAM under the Linux operating system. The C++ code
was compiled by gcc 2.96 GNU complier with -03 optimization switch. The library
FFTW 2.1.3 [58] was called to compute the Fast Fourier Transform.
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considered bitmap resolutions, at least for the present problem, provide com-
parable results in terms of accuracy of the searched geometric characteristics.

The similar numerical experiments were repeated for the FL and FS+L objec-
tive functions for the bitmap resolution 256 × 32 pixels. Note that sampling
templates with parameters TW = TH = H/2 and ∆W = ∆H = H/8 were
used for the determination of the lineal path function Lmm. The statistics
of the obtained numerical parameters together with the number of function
calls and overall computational time are stored in Tables 3 and 4. Note that
both optimization problems, being based on the Lm function, are about ten
times more time consuming. This again highlights the remarkable efficiency of
the FFTW library. Furthermore, both objective functions result in geomet-
rical parameters determined with a precision comparable to the Smm-based
optimization. This suggests that the scatter of the geometrical parameters is
caused solely by the discretization of the microstructure not by the objective
function or the selected optimization method.

Descriptor Success Number of func. eval. Total time

rate Min Avg Max [s]

Lm 20 / 20 3 059 5 842 9 295 12 592

Lm + Smm 20 / 20 1 196 4 909 30 699 11 804
Table 3
Lm and Lm + Smm-based identification for 256 × 32 bitmap: Number of function
evaluations

Descriptor amin amax hmin hmax

Lm 9.9227 10.0407 2.9967 3.0020

Lm + Smm 9.9243 10.0196 2.9977 3.0023

Descriptor bmin bmax gmin gmax

Lm 0.9973 1.0005 0.9855 1.0143

Lm + Smm 0.9969 1.0009 0.9864 1.0139
Table 4
Geometrical parameters of the PUC for 256 × 32 bitmap: Lm-based optimization,
combined optimization

Finally, for the sake of completeness, examples of typical objective runs to-
gether with the plot of objective functions are shown in Figs. 4.

To summarize this study, the presented results support the choice of the se-
lected optimization method; furthermore, the resolution of the bitmap 256×32
is sufficient to obtain the searched geometrical parameters with a reasonable
precision.
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Fig. 4. Examples of typical optimization procedures, (a) Smm-based objective
function, bitmap resolution 512 × 64 pixels, (b) Smm-based objective function,
bitmap resolution 256 × 32 pixels, (c) Lm-based objective function, bitmap reso-
lution 256× 32 pixels, (d) (Smm + Lm)-based objective function, bitmap resolution
256 × 32 pixels

4.2 Woven composites with shifted layers

As a representative of digitized images of real-world multilayered plain weave
composites, a set of three artificial bitmaps exhibiting different imperfections
was generated. In particular, the “samples” formed by two unit cells with
different layer and bundle heights (see Fig. 5b), two identical unit cells shifted
by a (see Fig. 5c) and by a/2 (see Fig. 5d) are considered in this section 2 .
Based on the results of the sensitivity analysis in the previous section, the
PUC #1 was discretized as a bitmap with the dimensions 256× 92 pixels and
the PUC #2–3 were represented by bitmaps with resolution 256 × 64 pixels.

For each artificial mesostructure bitmap, the statistically optimal periodic unit

2 The parameters of the bitmap 5b are a = 10, h = 3, b = g = 1 for the lower
layer and a = 10, h = 4.5, b = 1.5, g = 1 for the upper one; the remaining bitmaps
correspond to a unit cell with a = 10, h = 3, b = g = 1.
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(a) (b)

(c) (d)

Fig. 5. Artificial bitmaps of mesoscale geometry with typical tow misalignments,
(a) ideal stacking, (b) different layer heights (PUC #1), (c) layers shifted by
a (PUC #2), (d) layers shifted by a/2 (PUC #3)

cell based on Smm, Lm and Smm +Lm descriptors was found. The target value
of the objective function for each optimization problem was set to 10−6 and
the maximum number of function evaluations was restricted to 25,000. Each
optimization problem was executed ten times to verify that the global opti-
mum was reached and to determine the scatter of geometrical parameters. The
resulting optimal values obtained for individual bitmaps are stored in Table 5.
As expected, the values of identified parameters differ for individual statistical
descriptors. The reliability of the optimization process is rather ecouraging,
particularly when judging from the precision of the identified parameters for
combined objective function.

4.3 Homogenization

In the next step, optimized parameters derived in previous sections are used
in the geometrical model of Fig. 5 to generate an equivalent periodic unit cell
that represents a real composite. Such a unit cell can be then used within the
framework of the finite element method-based homogenization to arrive at the
desired approximation of the effective material behavior. Although a variety of
works devoted to this topic can be found in the literature, see, e.g., [8,9,14,59–
62] the homogenization procedure for the “stress-control” problem, in the
terminology of Michel et.al [60], is briefly reviewed here for the sake of com-
pleteness.

4.3.1 Problem formulation

To introduce the subject, consider a plain weave composite PUC with the
local coordinate systems defined such that the local x`

1 axis is aligned with
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Periodic Unit Cell #1

Descriptor a h b g

Smm 10.235 ± 0.023 3.792 ± 0.002 1.250 ± 0.001 1.726 ± 0.012

Lm 10.316 ± 0.018 3.785 ± 0.003 1.252 ± 0.001 1.766 ± 0.016

Smm + Lm 10.098 ± 0.015 3.754 ± 0.000 1.249 ± 0.000 1.014 ± 0.005

Periodic Unit Cell #2

Descriptor a h b g

Smm 9.931 ± 0.017 2.964 ± 0.001 0.995 ± 0.001 0.990 ± 0.005

Lm 10.863 ± 0.023 2.956 ± 0.002 0.996 ± 0.001 1.013 ± 0.008

Smm + Lm 9.975 ± 0.004 2.964 ± 0.001 0.994 ± 0.001 0.988 ± 0.005

Periodic Unit Cell #3

Descriptor a h b g

Smm 11.171 ± 0.032 3.046 ± 0.001 0.996 ± 0.001 0.670 ± 0.012

Lm 8.351 ± 0.033 2.887 ± 0.003 0.964 ± 0.001 0.247 ± 0.012

Smm + Lm 10.841 ± 0.016 3.045 ± 0.001 0.998 ± 0.001 0.715 ± 0.007
Table 5
Geometrical parameters of mesoscale PUCs

the fiber direction. Further suppose that the PUC is subjected to a prescribed
overall stress Σ. Due to assumed periodicity of the microstructure, the local
displacement field u(x) on mesoscale admits the following decomposition

u(x) = E · x + u∗(x), (19)

where u∗(x) represents a periodic fluctuation of the local displacement field
due to the presence of heterogeneities and E is the overall strain tensor. The
local strain tensor then assumes the form

ε(x) = E + ε∗(x), (20)

where the fluctuating part ε∗(x) vanishes under volume averaging. The goal
now becomes the evaluation of local fields within the mesoscopic unit cell and
then their averaging to receive at the searched macroscopic response. In doing
so, we first write the principle of virtual work (the Hill-Mandel lemma) in the
form

δE : Σ= 〈δε(x) : σ(x)〉 =
〈
δε`(x) : σ`(x)

〉
=
〈(

δE` + δε`(x)
)

: σ`(x)
〉

, (21)
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where 〈·〉 now denotes averaging with respect to the PUC and ·` is used to
denote a quantity in a local coordinate system. The stress field written in the
local coordinate system then reads

σ`(x) = L`(x) :
(
E` + ε∗`(x)

)
, (22)

with σ`(x) standing for the local stress field, L` is the material stiffness ten-
sor. Relating the strain tensors in the local and global coordinate systems by
well-known relations E` = Tε : E, ε∗` = Tε : ε∗, see, e.g. [41], and inserting
Eq. (22) into Eq. (21) yields the stationarity conditions of a given problem in
the form

δE : Σ= δE :
〈
Tε(x) :

[
L`(x) : Tε(x) : (E + ε∗(x))

]〉
, (23)

0 =
〈
δε∗(x) : Tε(x) :

[
L`(x) : Tε(x) : (E + ε∗(x))

]〉
, (24)

has to be satisfied for all kinematically admissible variations δE and δε∗.

4.3.2 Discretization

To obtain an approximate solution of the above system of equations, the stan-
dard conforming finite element method discretization is employed. We start
from decomposing the mesoscale periodic unit cell Y into Ne disjoint elements
Ye with the discretization respecting the interfaces between individual tows
and the matrix phase. Employing the engineering notation [41,42], the ap-
proximation of the fluctuating part of the displacement field u∗, written in
the global coordinate system, yields

{u∗(x)} = [N(x)] {r}, (25)

where [N] represents, as usual, the matrix of shape functions for a given parti-
tion of the unit cell and {r} is the vector of unknown degrees of freedom. The
corresponding approximation of the strain field is then provided by

{ε(x)} = {E} + [B(x)] {r}, (26)

where [B] is the strain-displacement matrix. Introducing Eq. (26) into Eq. (21)
gives, for any kinematically admissible strains {δε∗} = [B] {δr} and {δE}, we
get the associated system of linear equations in the form K11 K12

K12
T K22


E

r

 =

Σ

0

 . (27)

The individual stiffness matrices and vectors of generalized nodal forces are
obtained by the assembly of contributions for individual elements,
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[K11] =
Ne

A
e=1

[K11,e] ,where [K11,e] =
1

|Y |
∫

Ye

[Tε,e]
T
[
L`

meso,e

]
dYe, (28)

[K12] =
Ne

A
e=1

[K12,e] ,where [K12,e] =
1

|Y |
∫

Ye

[Tε,e]
T
[
L`

meso,e

] [
B̂e

]
dYe,

[K22] =
Ne

A
e=1

[K22,e] ,where [K22,e] =
1

|Y |
∫

Ye

[
B̂e

]
T
[
L`

meso,e

] [
B̂e

]
dYe,

where the “rotated” displacement-strain matrix
[
B̂e

]
is defined by the rela-

tion
[
B̂e

]
= [Tε,e] [Be] and A stands for the assembly of contribution of indi-

vidual elements [41,42]. The local-global transformation can be, e.g., easily
parametrized by Euler angles determined from relations (A.10)–(A.11). Note
that in the present implementation, linear tetrahedral elements are used and
the values of Euler angles are related to the center of gravity of each element
and are supposed to remain constant on a given element. Furthermore, the
periodicity condition for the fluctuating field u∗ was accounted for through
multi-point constraints, see [60].

Finally, eliminating the fluctuating displacements from the system (27) allows
us to write the homogenized constitutive law in the form

{Σ} =
[
Lfem

]
{E}, where

[
Lfem

]
= [K11] − [K12] [K22]

−1 [K12]
T. (29)

An important step of the mesoscale modeling is preparation of a 3D mesh of
warp and fill bundles and matrix phase complying with the requirements of
mesh periodicity. In the current work, the principles of matched mesh gener-
ation [63] were implemented into Advancing Front method-based automated
mesh generator T3D [64,65]. Examples of tetrahedral meshes of a plain-weave
unit cell generated by this algorithm are displayed in Figs. 6 and 7.

Fig. 6. Plain weave finite element meshes
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4.4 Results

As the first step, the effect of scatter of individual identified parameters is
addressed. The material properties of matrix and bundle were taken from [28]
and are listed in Table 6.

Bundle properties [GPa]

L`
11 L`

22 L`
33 L`

12 L`
13 L`

23 L`
44 L`

55 L`
66

176.8 10.74 10.72 6.897 6.897 6.319 2.216 4.861 4.861

Matrix properties [GPa]

EA ET GT νA

5.5 5.5 1.96 0.40
Table 6
Elastic material properties

The minimum and maximum dimensions were taken from the Smm-based iden-
tification problem for the bitmap dimensions 256×32, see Table 2. The results
stored in Table 7 show that the difference in effective elastic moduli due to
uncertainty in mesoscale PUC parameters is approximately comparable to the
differences found by uniform mesh refinement [30]. Moreover, the deviation of
the Lfem

11 entry can be attributed to a relatively large difference in the bundle
volume fraction cf for the analyzed unit cells.

Dimensions Lfem
11 Lfem

12 Lfem
33 Lfem

44 Lfem
66 cf

[GPa] [GPa] [GPa] [GPa] [GPa]

Minimal 25.247 7.496 11.371 2.264 2.965 0.3674

Target 25.250 7.494 11.370 2.265 2.966 0.3678

Maximal 25.217 7.508 11.384 2.247 2.922 0.3554
Table 7
Effects of uncertainties in mesoscale PUC dimensions

Finally, we present the comparison of effective elastic properties for the tar-
get bitmaps and corresponding statistically optimized unit cells obtained in
Section 4.2. The finite element meshes corresponding to the target mesostruc-
ture appear in Fig. 7 3 , while the effective elastic properties of the target
microstructure and the statistically optimized unit cells are stored in Table 8.

Evidently, the best correspondence between the artificial micrographs and the

3 Note that for mesh generation, the unit cells were shifted by a/2 compared to
bitmaps displayed in Fig. 5.
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Periodic Unit Cell #1

Descriptor Lfem
11 Lfem

12 Lfem
33 Lfem

44 Lfem
66 cf

[GPa] [GPa] [GPa] [GPa] [GPa]

Smm 21.100 7.499 11.401 2.265 2.868 0.3386

Lm 22.698 7.503 11.410 2.235 2.842 0.3312

Smm + Lm 23.334 7.490 11.383 2.255 2.925 0.3567

Target 23.324 7.453 11.384 2.269 2.963 0.3678

Periodic Unit Cell #2

Descriptor Lfem
11 Lfem

12 Lfem
33 Lfem

44 Lfem
66 cf

[GPa] [GPa] [GPa] [GPa] [GPa]

Smm 25.341 7.500 11.375 2.257 2.947 0.3635

Lm 26.309 7.494 11.372 2.259 2.959 0.3671

Smm + Lm 25.121 7.495 11.376 2.256 2.956 0.3629

Target 24.786 7.467 11.370 2.266 2.965 0.3678

Periodic Unit Cell #3

Descriptor Lfem
11 Lfem

12 Lfem
33 Lfem

44 Lfem
66 cf

[GPa] [GPa] [GPa] [GPa] [GPa]

Smm 27.629 7.471 11.362 2.268 2.997 0.3752

Lm 27.464 7.393 11.349 2.279 3.027 0.3872

Smm + Lm 27.095 7.473 11.371 2.258 2.966 0.3678

Target 24.694 7.416 11.374 2.273 2.972 0.3670
Table 8
Effective properties of statistically optimized mesoscale PUCs

periodic unit cell was reached for the PUC #1 microstructure where the op-
timization procedure predicts the in-plane properties with approximately the
same variation as the one resulting from uniform mesh size refinement [30].
Note that analogously to problems of random media reconstruction, the com-
bined optimization procedure yields the best results. The periodic unit cell
based on parameters identified for PUC #2 correctly predicts the bundle vol-
ume fraction; it does not, however, take into account the different inclination
of tows in individual layers which results in a slight overestimation of Lfem

11

modulus. The most severe differences can be observed for the PUC #3 mi-
crostructure. As follows from Table 5, all the optimized unit cell exhibit sub-
stantially smaller value of gap between individual tows g to accommodate the
layer shift present in the target micrograph, which leads to overestimating the
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bundle volume fraction resulting in a higher value of the in-plane component
Lfem

11.

(a)

(b)

(c)

Fig. 7. Mesoscale meshes, (a) PUC #1, (b) PUC #2, (c) PUC #3

5 Conclusions

In the first part of the present work, a simple and intuitive approach to the de-
termination of idealized periodic unit cells based on microstructural statistics
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has been proposed. In particular, the reconstruction based on the two-point
probability function, the lineal path function and their combination has been
considered. The applicability and limitations of the present procedure have
been demonstrated by analyzing artificial binary images of two-layer compos-
ite materials with relative shift of individual layers. The geometrical parame-
ters of the periodic unit cells, following from the optimization analysis, have
been employed to formulate the Finite Element model and to determine the
effective elastic properties of the resulting composite.

The obtained results allow us to conclude that the proposed procedure can
be efficiently used for multilayered composites with possibly varying layers
heights provided that the relative shift of individual layers is not very large or
approximately equal to the unit cell half-width. In the opposite case, however,
it appears to be necessary to formulate the optimized unit cell in terms of at
least two-layered composite, too. Note, however, that the difference of cross-
sections corresponding to planes x = ±a and y = ±a, see Fig. 7c, calls for
microstructural information supplied in the form of bitmaps taken from several
locations of a composite in two orthogonal directions rather than for only
one bitmap considered in this work. This generalization, together with the
examples of real-world microstructures, will be considered in the forthcoming
second part of this paper [66].
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[53] K. Matouš, M. Lepš, J. Zeman, M. Šejnoha, Applying genetic algorithms
to selected topics commonly encountered in engineering practice, Computer
Methods in Applied Mechanics and Engineering 190 (13–14) (2000) 1629–1650.

[54] S. Mahfoud, D. Goldberg, Parallel recombinative simulated annealing: A genetic
algorithm, Parallel Computing 21 (1) (1995) 1–28.

[55] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley, 1989.

[56] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs,
3rd Edition, Springer-Verlag, 1996.
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A Woven composite geometrical model
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Fig. A.1. Schematic representation plain weave geometry

The profile of the warp tow centroid pc is described by the relation

pc(x) = − sin
(

πx

a

)
, (A.1)

while the profile of the fill tow centroid follows from the previous relation by
an appropriate change of x and y coordinates and the sign (see Eq. (A.8)).
To maintain compatibility between warp and fill tows, the internal profiles of
tows pi are provided by

pi(x) = sin

(
π|x|
a

)
. (A.2)

The external profile pe is derived from analogous relation with amplitude mod-
ified to take into account the non-symmetry of tows and the presence of the
gap between tows g,

pe(x) = (1 + β) sin

(
π(|x| − g/2)

a − g

)
− β, (A.3)

with the coefficient β defined as

β = sin
(

πg

2a

)
. (A.4)
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The auxiliary functions R, FH and FR are used to linearly interpolate these
one dimensional functions in order to obtain representation of lower and upper
surfaces of individual tows,

FH(x) = H
(
|x| − g

2

)
− H

(
|x| + g

2
− a

)
, (A.5)

R(x) =


x/g + 1/2, |x| ≤ g/2,

H(x), g/2 < |x| ≤ a − g/2,

(sgn (x)a − x)/g + 1/2, a − g/2 < |x| ≤ a,

(A.6)

FR(η, x, y)= R(η sgn (y)x), (A.7)

where H stands for the Heaviside function, sgn denotes the signum function
and parameter η = 1 is used for the upper surface of a tow while η = −1
corresponds to the lower surface of a tow. Finally, the warp and fill tow surfaces
are determined by

swarp(η, x, y) = stow(η, x, y), sfill(η, x, y) = −stow(−η, y, x), (A.8)

where the general tow surface function stow(η, x, y) for positions |x| ≤ a and
|y| ≤ a is defined as

stow(η, x, y) =
b

2
FH(y) (sgn (y)pc(x) + ηFR(η, x, y)pi(y) + ηFR(−η, x, y)pe(y)) .

(A.9)
Finally, the orientation of fibers within the tows is assumed to be parallel to
the centroid axes of the tows; the corresponding angles of rotation are given
by

θwarp
y (x, y)= arctan

(
−πb

2a
sgn (y) cos(

πx

a
)

)
, (A.10)

θfill
x (x, y)= arctan

(
−πb

2a
sgn (x) cos(

πy

a
)

)
. (A.11)
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