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ABSTRACT

Owing to the high computational cost in the analysis of large composite structures through
a multi-scale or hierarchical modeling an efficient treatment of complex material systems
at individual scales is of paramount importance. Limiting the attention to the level of
constituents the present paper offers a prosperous modeling strategy for the predictions of
nonlinear viscoelastic response of fibrous graphite-epoxy composite systems with possibly
random distribution of fibers within a transverse plane section of the composite aggregate.
If such a material can be marked as statistically homogeneous and the mechanisms driv-
ing the material response fall within the category of first-order homogenization scheme the
variational principles of Hashin and Shtrikman emerge as an appealing option in the so-
lution of uncoupled micro-macro computational homogenization. The material statistics
up to two-point probability function that are used to describe the morphology of such a
microstructure can be then directly incorporated into variational formulations to provide
bounds on the effective material response of the assumed composite medium. In the present
formulation the Hashin-Shtrikman variational principles are further extended to account
for the presence of various transformation fields defined as local eigenstrain or eigenstress
distributions in the phases. The evolution of such eigenfields is examined here within the
framework of nonlinear viscoelastic behavior of polymeric matrix conveniently described
by the Leonov model. Fully implicit integration scheme is implemented to enhance the
stability and efficiency of the underlying numerical analysis. In this regard the Fourier
transform is called when solving the resulting integral equations, which permits an ar-
bitrary choice of the reference medium so that often encountered anisotropy of individual
phases creates no obstacles in the solution procedure. Attention is also paid to the evalua-
tion of the required material statistics. It is shown that replacing the actual microstructure
of real world composites with a corresponding digitized image renders a computationally
promising numerical approach for their derivation. Apart from application to nonlinear
viscoelastic problem the use of the present modeling strategy is further promoted by a good
agreement of estimated effective thermoelastic properties with predictions obtained from
periodic unit cell models.
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1. INTRODUCTION

An increasing interest in fabric reinforced compos-
ites made of various patterns of stiff graphite fiber
tows embedded in a light polymer brings new
challenges to an accurate prediction of the me-
chanical behavior of such complex material sys-
tems. To avoid an abstract discussion on this sub-
ject we introduce a multi-layered wound composite
tube, Fig. 1 to represent a class of composite struc-
tures, for which an accurate prediction of mechan-
ical response inevitably requires analyses on differ-
ent length scales, e.g., a three-scale modeling.

Macro-scale ≈ 100 m

Meso-scale ≈ 10−3 m

Micro-scale ≈ 10−6 m

Figure 1: A scheme of three-scale modeling

It is now being widely accepted that novel hierarchi-
cal or multi-scale homogenization techniques offer a
reliable route in numerical investigation of deforma-
tion and failure processes taking place at individual

scales [FYS99, KGB02, Mas03].

As generally recognized, a successful completion of
this goal calls for an accurate as well as efficient
micromechanical modeling starting from the basic
building block of a fiber tow impregnated by the ma-
trix phase. As manifested in Fig. 2(a), such a step
needs special techniques enabling the determination
of effective properties of disordered media. Some
promising directions are discussed in papers by
[Pov95, ZS01, SZ02b, SG02] and [ZS03]. The essen-
tial ingredient of their approach is formulation of a
representative volume element in terms of a periodic
unit cell consisting of a small number of particles,
which statistically resembles the actual composite.
Such a unit cell is derived from a simple optimiza-
tion procedure formulated in terms of various statis-
tical descriptors characterizing the microstructure of
the random medium. Once the geometry of the unit
cell is specified, well-developed techniques of first-
order homogenization (see, e.g., [TD88, MMS99,
KBB01]) can be applied to obtain collective prop-
erties of analyzed media, ranging from evaluation
of the effective thermoelastic properties of random
composites to general inelastic analysis of actual
material systems under overall thermo-mechanical
loading.

Although promising in its potential the procedure
may prove to be prohibitively expensive particu-
larly in connection with large multi-scale model-
ing. If the principle objective becomes reduction of
the computational cost particularly on microscale it
is provident to appreciate the well known effective
medium theories that utilize the Eshelby solution.
Being aware of the limits of their validity (e.g., first-
order homogenization, applications limited to load-
ing path that induce fiber dominated mode plas-
ticity [DBED87]) one may afford a relatively sim-
ple extension of these methods to loading condi-
tions which promote inelastic deformation. A com-
prehensive overview of applications of these mi-
cromechanical techniques combined with the trans-
formation field analysis of Dvorak [Dvo92, DB92] to
arrive at the solution of inelastic deformation and
other incremental problems in heterogeneous me-
dia with many interacting inhomogeneities can be
found, e.g., in [DYW94, CKMP01]. Successful im-
plementation within the framework of the Mori-
Tanaka method has also been reported in works
by [LGN91], [SM99] and [Mat03].

The present contributions expands this class of theo-
ries by incorporating elements of real microstructure
into formulation of constitutive equations. Here, the
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two-point averaging scheme proposed by [FS00] is
revisited in conjunction with the Hashin-Shtrikman
variational principles [HS63, Wil77] applied to real
world material systems. Both the displacement and
traction based formulations are presented in view of
random composites and extended to account for the
presence of initial stresses or strains. Further com-
ments on this subject can be found in [Wil81, PS03].

To keep up with our previous studies on this sub-
ject [ZS01, SZ02a, SZ02b], we refer again to the
graphite fiber tow embedded in the polymer ma-
trix, Fig. 2(a), to serve as a representative of the
two-phase disordered composite medium. Note that
Fig. 2(a) represents just one specific cut taken from
the fiber two-dimensional cross-section as displayed
in Fig. 1(a). Random character of fibers arrange-
ment, typical for such material systems, is conve-
niently described by the two-point probability func-
tion [TS82]. The most appealing feature of this func-
tion is the ease and efficiency of its evaluation par-
ticularly when taking advantage of the Fast Fourier
transform applied to the binary images, Fig. 2(b),
of real microstructures [Zem03]. Although higher-
order statistical functions such as the three-point
probability function may add further knowledge in
characterizing the morphology of random compos-
ites (see, e.g., [Mar98, Mil02, Tor02]), their evalua-
tion is generally not straightforward and rather ex-
pensive especially for high-resolution images of real
microstructures and typically relies on the assump-
tion of statistical isotropy.

The overall non-linear response of the present ma-
terial system is a direct consequence of the behavior
of the epoxy matrix that shows significant stress and
strain rate sensitivity [KL97]. It has been reported
in several papers ([BS02, HAM04] to cite a few)
that such a complex non-linear mechanical behavior
can be well described either by the Shapery [Sch69]
or the generalized Leonov non-linear viscoelastic
model [Ter96]. The numerical implementation is
usually utilized by converting the general integral
equations into a rate-type form employing standard
chain models due to Kelvin and Maxwell. Although
both chain models provide identical response to a
given set of loading and boundary conditions, the
Kelvin or Kelvin-Voight is more suitable for creep
type of loading thus directly applicable with the
dual Hashin-Shtrikman variational principle unlike
the Maxwell chain model that admits straightfor-
ward solution of the relaxation problem easily uti-
lized with the primary principle. Since the strain
control boundary conditions fit well also with the

finite element implementation the latter model en-
hanced by the Leonov type of time-stress superposi-
tion and presented within the framework of the pri-
mary Hashin-Shtrikman variational principle is ex-
amined. Fully implicit integration scheme is used to
arrive at a correct convergent state for a given time
increment.

(a)

(b)

Figure 2: (a) A real micrograph (b) a binary image of
a transverse plane section of the fiber tow, resolution
is 976× 716 pixels

In a summary, if we seek for an efficient solution
of the nonlinear homogenization problem at least
at the lowest scale (with restriction to continuum
mechanics) the Hashin-Shtrikman variational prin-
ciples that allow incorporation of the knowledge of
the real microstructure through the two-point prob-
ability function appear as a choice worthwhile to ex-
plore.
The paper is organized as follows. Section 2 reviews
general formulation of the Hashin-Shtrikman varia-
tional principles extended for the presence of local
eigenstrains or eigenstresses. It further outlines fast
numerical procedure based on the Discrete Fourier
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Transform for the evaluation of two-point probabil-
ity function. The procedure draws upon the knowl-
edge of digitized images of real microstructures and
the possibility of periodic extension of a represen-
tative volume element (RVE). The section closes by
comparing the effective thermoelastic properties de-
rived from the present approach with those found
from the unit cell analysis [ZS01]. Section 3 presents
an implicit formulation of the nonlinear viscoelas-
tic problem that arises from the application of gen-
eralized Leonov model. This is followed by sev-
eral numerical examples that highlight the model
applicability. Useful remarks on evaluation of cer-
tain microstructure-dependent matrices are given in
Appendix A. Appendix B finally comments on sev-
eral aspects of numerical integration. To keep the
discussion simple the analysis is performed in the
one-dimensional setting. More information on the
material response of the assumed epoxy matrix in-
cluding experimental results can be found in the up-
coming paper [VS03].
In the following text, a, a and A denote a vector, a
symmetric second-order and a fourth-order tensor,
respectively. The standard summation notation is
adopted, i.e., by A : b denotes the sum Aijklbkl while
a · b stands for aibi, where the summation with re-
spect to repeated indices is used. The symbol {a}
is reserved for a column matrix or a vectorial rep-
resentation of symmetric second-order tensor while
the notation [L] is employed for a matrix representa-
tion of a fourth-order tensor [BS96]. f̃ will be used
to denote the Fourier transform of a given function
f . Finally, note that the state of generalized plane
strain [MMS99, Appendix B] with x3 being the axis
of fibers is assumed in the whole analysis.

2. MACROSCOPIC CONSTITUTIVE EQUATIONS

To introduce the subject, consider a material element
having a length scale sufficiently large compared to
the microstructural one so it can be treated as sta-
tistically representative of the composite. With ref-
erence to the scope of the current work, we fur-
ther limit our knowledge of microstructural config-
uration to the description by two-point probability
functions, see Section 2.1. Such a limited charac-
terization still contains substantially more informa-
tion compared to the description by volume frac-
tions only and it is quite beneficial to the numeri-
cal analysis as it allows relatively simple application
of the Hashin-Shtrikman variational principles for
incorporating microstructural information beyond

that contained in the volume fractions.
In particular, Hashin and Shtrikman [HS62] pre-
sented two alternative representations of energy
functions by introducing polarization fields relative
to a homogeneous reference (comparison) medium.
In Sections 2.2 and 2.3, we focus on theoretical as-
pects associated with the variational formulation for
anisotropic and non-homogeneous bodies with ei-
ther prescribed displacements u = u or tractions
p = p along the entire boundary S of the compos-
ite. In addition, eigenstrains (stress free strains) or
eigenstresses are admitted in the present formula-
tion. Successful predictions of thermoelastic effec-
tive properties derived for the material system of
Fig. 2(a) are presented in Section 2.4 to motivate the
subsequent analysis of materials showing nonlinear
and time-dependent behavior.

2.1. Evaluation of two-point probability func-
tions

To begin, consider a sample space S defined here
as a collection of material elements similar to one
of Fig. 2(a). Random nature of the present mate-
rial system further suggests that individual mem-
bers of S, to be statistically representative of the
composite, should be sufficiently large compared to
the microstructural length scale (e.g., fiber diame-
ter). Apart from such a classical representation of
a material representative volume element (RVE) we
pose an additional, perhaps more concrete, require-
ment on the minimum size of the RVE. In particular,
from the prospective of micromechanical analysis to
come we shall require the size of the RVE to be at
least such that one can identify two points, both con-
tained by the RVE, which are statistically indepen-
dent.
Such a sample space S is called an ensemble – the
collection of a large number of systems that are
different in their microscopical details but identi-
cal in their macroscopic details. Formation of S
then opens a way to provide an estimate for effec-
tive or expected value of some quantity, say stress
or strain field, through the process of its averaging
over all systems in the ensemble. To proceed, label
individual members of this space by α and define
p(α) as the probability density of α in S (see, e.g.,
[DW96, Wil77]) for further reference). Then, the en-
semble average of function F (x, α) at a point x is pro-
vided by

F (x) =

∫

S
F (x, α)p(α)dα. (2.1)

Volume x, Number y, 200z
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Hereafter, we limit our attention to a two-phase ran-
dom medium. To provide a general statistical de-
scription of such a system it proves useful to char-
acterize each member of the ensemble by a stochas-
tic function – characteristic function χr(x, α), which
equals to one when a point x lies in a phase r in the
sample α and equals to zero otherwise [Ber68, TS82],

χr(x, α) =

{
1 x ∈ Dr(α)
0 otherwise , (2.2)

where Dr(α) denotes the domain occupied by the r-
th phase; r is further assumed to take values m for
the matrix phase while symbol f is reserved for the
second phase. Except where noted, a fibrous com-
posite with aligned impenetrable fibers having cir-
cular cross-section of equal radius is considered. For
such a system the characteristic functions χf (x, α)
and χm(x, α) are related by

χm(x, α) + χf (x, α) = 1. (2.3)

With regard to the potential application of H-S vari-
ational principles it is sufficient to quantify the mor-
phology of random medium by the one-point proba-
bility function Sr(x)

Sr(x) = χr(x, α), (2.4)

which simply gives the probability of finding the
phase r at x and by the two-point probability function
Srs(x,x′)

Srs(x,x′) = χr(x, α)χs(x′, α), (2.5)

which denotes the probability of finding simultane-
ously phase r at x and phase s at x′. When regard-
ing the material as ergodic and statistically homoge-
neous Eqs. (2.4) and (2.5) become

Sr(x) = cr, (2.6)
Srs(x,x′) = Srs(x − x′), (2.7)

where cr is the volume fraction of the r-th phase (see
[ZS01] for testing statistical hypotheses).
In evaluation of the two-point probability function
Srs we introduce a binary version of Fig. 2(a). Such a
digitized micrograph, Fig. 2(b), can be imagined as a
discretization of the characteristic function χr(x, α),
presented in terms of a M × N bitmap. Denot-
ing the value of χr for the pixel located in the ith

row and jth column as a χr(i, j) allows writing the
function Sm for an ergodic and statistically homoge-
neous medium in the form

Sr =
1

MN

M∑

i=1

N∑

j=1

χr(i, j) (2.8)

while, under assumption of periodicity of analyzed
media, the two-point probability function Srs as-
sumes the form

Srs(m, n) = (2.9)

1

MN

M∑

i=1

N∑

j=1

χr(i, j)χs((i + m)%M, (j + n)%N),

where symbol “%” stands for modulo. The number
of operations needed to evaluate the sum (2.9) can
be substantially reduced when using the fast Fourier
transform algorithm [Ber84]. Indeed, recognizing
that (2.9) is the cyclic correlation [BP85], the Discrete
Fourier Transform (DFT) of this function is given by
the following relation

DFT{Srs(m, n)} = DFT{χr(m, n)}DFT{χs(m, n)},
(2.10)

where · now stands for a complex conjugate. The
inverse DFT denoted as IDFT then serves to derive
function Srs at the final set of discrete points as

Srs(m, n) = IDFT{DFT{χr(m, n)}DFT{χs(m, n)}}.
(2.11)

Usually, the Fast Fourier Transform [EJ98], which
needs only MN(log(MN)) operations, is called to
carry out the numerical computation.
Fig. 3(a) shows the two–point matrix probability
function Smm obtained for the 488×358 resolution of
the digitized medium. In addition, the isotropized
values of the two-point probability function, de-
rived for different resolution of digitized media, are
shown in Fig. 3(b). Evidently, even rather coarse
resolution of analyzed bitmap is sufficient to ob-
tain these functions with a high degree of precision,
which can substantially reduce the computational
time needed for evaluation of this function, see Ta-
ble 1.

Bitmap resolution
976 × 716 488 × 358 244 × 179

6.24 1.54 0.37

Table 1: CPU time in seconds required to evaluate
function Smm

The final comment reconciles the true behavior of
function Srs and its periodic character which results
from Eq. (2.11). Recall that for large values of ‖x‖,
we require two points to be statistically indepen-
dent, i.e. Smm(x) −→ c2

m. Therefore, the sample
size should be sufficiently large to comply with this
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(a)

0 32 64 96 128 160 192 224 256
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Bitmap resolution 244 x 179
Bitmap resolution 488 x 358
Bitmap resolution 976 x 716

(b)

Figure 3: Two-point matrix matrix probability Smm

function derived for a digitized medium, (a) Exam-
ple of the function, (b) Effect of bitmap resolution

property. As illustrated in Fig. 3(b) this requirement
is certainly fulfilled for the present sample. Recall
one specific example shown in Figs. 2(b) taken as a
random cut from various locations in the fiber tow
as displayed in Fig. 1(c).

2.2. Strain control approach

With reference to the general problem displayed in
Fig. 4 we consider an anisotropic and heterogeneous
body loaded by an affine displacement field u0(x) =
E · x. The local constitutive law including eigen-
stresses λ then reads

σ(x) = L(x) : ε(x) + λ(x) in Ω, (2.12)
u = u on S.

As suggested by Hashin-Shtrikman [HS62] the lo-
cal stress and strain fields in Eq. (2.12) can be found
from the two auxiliary boundary value problems,
Fig. 4. The procedure starts by assuming a geomet-
rically identical body with a certain reference ho-
mogeneous, but generally anisotropic, medium L0

and the same prescribed displacements. The corre-

sponding uniform strain E and stress Σ fields are
related through constitutive law in the form

Σ = L0 : E in Ω, u0 = u on S. (2.13)

Following the Hashin-Shtrikman idea, we introduce
the symmetric stress polarization tensor τ such that

σ(x) = L0 : ε(x) + τ (x). (2.14)

In addition, denote

u′ = u − u0(x) in Ω, (2.15)
u′ = 0 on S,

and

ε′(x) = ε − E in Ω, (2.16)
σ′(x) = σ −Σ in Ω. (2.17)

The objective is to formulate a variational prin-
ciple describing the behavior of the nonhomo-
geneous anisotropic material subjected to known
eigenstresses and prescribed boundary displace-
ments. Schematic representation of this problem is
displayed in Fig. 4. Provided that both σ and Σ

fields are statically admissible, the following equa-
tions have to be satisfied (see, e.g., [BS96]),

∇ · (L0 : ε + τ ) = 0 in Ω, (2.18)
τ − (L − L0) : ε − λ = 0 in Ω, (2.19)

u′ = 0 on S. (2.20)

A formulation equivalent to Eqs. (2.18) and (2.19)
may be obtained by performing a variation of the
extended functional

Uτ =
1

2

∫

Ω

(
E :Σ− (τ − λ) : (L − L0)

−1 : (τ − λ) +

+ 2τ :E + ε′ : τ + λ :L−1 : λ
)
dΩ.

(2.21)

Setting

δUτ = −1

2

∫

Ω

{2δτ : [(L − L0)
−1 : (τ − λ) − ε] +

+ δτ : ε′ − δε′ : τ}dΩ = 0, (2.22)

we find that Eq. (2.19) is one of the stationarity con-
ditions of Uτ , while the second condition, Eq. (2.18),
follows after recasting the remaining terms in the
brackets. Finally, it can be proven that the station-
ary value US

τ of the potential Uτ equals the actual
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Figure 4: Body with prescribed surface displacements including eigenstresses

potential energy stored in the anisotropic heteroge-
neous body

US
τ =

1

2

∫

Ω

(ε − µ) : L : (ε − µ)dΩ, (2.23)

where µ = −L−1λ is the vector of eigenstrains
(stress-free strains). The functional Uτ attains its
maximum (δ2Uτ < 0) if (L−L0) is positive definite
and its minimum if (L − L0) is negative definite.
To make use of H-S functional, Eq. (2.21), or its vari-
ation, Eq. (2.22), one has to express ε′ via the polar-
ization tensor τ

ε′(x) = ε(x) − E (2.24)

=

∫

Ω

ε∗
0
(x − x′) : (τ (x′) − 〈τ 〉) dx′

= [ε∗
0
(τ − 〈τ 〉)] ,

where 〈·〉 represents a volume average of a given
quantity. Detailed derivation of the operator
[ε∗

0
(τ − 〈τ 〉)] can be found, e.g, in [Krö86, Mur87,

Wil77] and Appendix A. Subscript 0 is used to iden-
tify this operator with the homogeneous reference
medium. Introducing Eq. (2.24) into Eq. (2.21) gives

Uτ =
1

2

∫

Ω

(
E :Σ− (τ (x)−λ(x)) : (L(x)−L0)

−1 :

: (τ (x) − λ(x)) + 2τ (x) : E + τ (x) :

:

∫

Ω

ε∗
0
(x − x′) : (τ (x′) − 〈τ 〉) dx′+

+ λ(x) : L−1(x) : λ(x)

)
dx. (2.25)

If each phase r of a randomly arranged composite
is homogeneous with moduli Lr, r = 1, . . . , n, then
the material stiffness matrix in the sample α can be
expressed as [DW96],

L(x, α) =

n∑

r=1

Lrχr(x, α). (2.26)

With the help of Eq. (2.4), the ensemble average of L

is

L(x) =

n∑

r=1

LrSr(x). (2.27)

Similarly, the trial fields for τ and eigenstress λ at
any point x located in the sample α are provided by

τ (x, α) =

n∑

r=1

τ r(x)χr(x, α), (2.28)

λ(x, α) =

n∑

r=1

λr(x)χr(x, α), (2.29)

with the respective ensemble averages written as

τ (x) =

n∑

r=1

τ r(x)Sr(x), (2.30)

λ(x) =

n∑

r=1

λr(x)Sr(x). (2.31)

To facilitate the solution of the present problem the
material is assumed to be ergodic and statistically
homogeneous. Therefore,

L =

n∑

r=1

Lrcr, τ (x) =

n∑

r=1

τ r(x)cr ,

λ(x) =

n∑

r=1

λr(x)cr . (2.32)

Substituting Eqs. (2.28) and (2.32) into Eq. (2.25)
yields the averaged form of the extended Hashin-
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Shtrikman principle

Uτ =
1

2

∫

Ω

(
E :Σ +

∑

r

crλr(x) : Lr : λr(x)
)
dx−

− 1

2

n∑

r=1

∫

Ω

(
cr(τ r(x) − λr(x)) : (Lr − L0)

−1 :

: (τ r(x) − λr(x)) − 2crτ r : (x)E
)
dx+

+
1

2

n∑

r=1

n∑

s=1

∫

Ω

τ r(x) :

∫

Ω

ε∗
0
(x − x′) :

: [Srs(x − x′)τ s(x
′) − cr 〈τ 〉] dx′dx.

Assuming a piecewise uniform variation of eigen-
stress vector λ and polarization stress τ (λr(x) =
λr, τ r(x) = τ r), setting 〈τ 〉 =

∑
r τ rcr and then per-

forming variation with respect to τ r provides the ex-
tended form of the stationarity conditions. Employ-
ing the engineering notation, the stationary condi-
tions yield the following system of linear equations

n∑

s=1

(
δrs([Lr] − [L0])

−1cr − [Ars]
)
{τs} =

{E}cr + ([Lr] − [L0])
−1{λr}cr,

(2.33)

where r = 1, . . . , n. The microstructure-dependent
matrices [Ars] are independent of x and are provided
by

[Ars] =

∫

Ω

[ε∗0 ] (x − x′) (Srs(x − x′) − crcs) dx′.

(2.34)
A symbolic inversion of the system (2.33) gives the
solution for unknown components of the polariza-
tion stress {τr} in the form1

{τr} =

n∑

s=1

cs [Trs]
(
{E} + ([Ls] − [L0])

−1{λs}
)
,

(2.35)
from which

{τ} =
n∑

r=1

n∑

s=1

crcs [Trs]
(
{E}+ ([Ls] − [L0])

−1{λs}
)
.

(2.36)
Hence, according to (2.12) and (2.14), the overall
constitutive law can be written as

{Σ} =
[
LHS

]
{E}+ {ΛHS}, (2.37)

1Note that matrices [Trs] correspond to individual blocks of
the inverse to the left-hand side matrix of the system (2.33).

where

[
LHS

]
= [L0] +

n∑

r=1

n∑

s=1

crcs [Trs] , (2.38)

{ΛHS} =

n∑

r=1

n∑

s=1

crcs [Trs] ([Ls] − [L0])
−1{λs}.

In general, solving Eq. (2.33) calls for an efficient
method to tackle Eq. (2.34). A suitable method of at-
tack for obtaining the matrices [Ars] numerically for a
binary representation of real microstructures is pre-
sented in Appendix A. In addition, explicit forms of
matrices [Trs] for a two-phase medium are provided.

2.3. Stress control approach

Recall that the primary variational principle of
Hashin and Shtrikman Eq. (2.21), modified to ac-
count for the presence of initial stresses, can be used
to derive the effective stiffness matrix

[
LHS

]
and

overall eigenstress {ΛHS} of the composite medium.
Similarly, employing its dual counterpart one may
arrive at the effective compliance matrix

[
MHS

]
and

overall eigenstrain {ΥHS}. In such a case the bound-
ary value problem discussed in Section 2.2 is modi-
fied according to Fig. 5.
In particular, suppose that surface tractions p =
Σ ·n compatible with a uniform stress Σ are applied
along the boundary S of a homogeneous compar-
ison medium (Step I) characterized by the compli-
ance matrix M0. The corresponding uniform strain
E then follows from the constitutive law

E = M0 :Σ in Ω, (2.39)
p0 = p on S. (2.40)

The local stress σ(x) at a point x in Ω of a composite
is found by superimposing the solution of the local
problem displayed in Fig. 5 Step II. The respective
governing equations then read

ε(x) = M(x) : σ(x) + µ(x) on Ω, (2.41)
p = p on S. (2.42)

ε(x) = M0 : σ(x) + γ(x) in Ω, (2.43)
0 = ε′ij,kl(x) + ε′kl,ij(x)

− ε′ik,jl(x) − ε′jl,ik(x) in Ω, (2.44)

γ(x) = (M(x) −M0) : σ(x) + µ(x) in Ω, (2.45)
p′(x) = p(x) − p0 in Ω, (2.46)

p′ = 0 on S, (2.47)
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= 00

Figure 5: Body with prescribed surface tractions including eigenstrains

where µ(x) is the local eigenstrain and γ(x) is called
the polarization strain. The compatibility equa-
tion (2.44) together with Eq. (2.45) follow from the
extended energy functional given by

Uγ =
1

2

∫

Ω

(
Σ : E−(γ−µ) : (M−M0)

−1 : (γ−µ)+

+ 2γ :Σ + σ′ : γ
)
dΩ. (2.48)

Again, performing a variation with respect to un-
known quantities γ and σ′ yields

δUγ = −1

2

∫

Ω

{2δγ : [(M−M0)
−1 : (γ − µ) − σ] +

+ δγ :σ′ − δσ′ : γ}dΩ. (2.49)

Setting δUγ = 0 we immediately recover Eq. (2.45),
while the compatibility condition, Eq. (2.44), follows
after recasting the remaining terms in the brackets.
As for the primary variational principle, it can be
proven that the stationary value US

γ of the potential
Uγ equals the actual complementary energy stored
in the anisotropic and heterogeneous body

US
γ =

1

2

∫

Ω

(σ :M : σ + 2σ : µ)dΩ. (2.50)

The functional Uγ attains its maximum (δ2Uγ < 0)
if (M − M0) is positive definite and its minimum if
(M −M0) is negative definite.
To reduce the number of unknown quantities we
first write σ′ in terms of the polarization strain γ in
the form

σ′(x) = σ(x)−Σ =

∫

Ω

σ∗
0
(x−x′) :

(
γ(x′)−〈γ〉

)
dx′−

−M−1
0 :

(
γ(x) − 〈γ〉

)
= [σ∗

0
(γ − 〈γ〉)] (2.51)

The operator [σ∗
0

(γ − 〈γ〉)] can be identified with
the operator [ε∗

0
(τ − 〈τ 〉)] when replacing γ for τ

and σ∗
0

for ε∗
0

and suitably modifying the bound-
ary term to reflect the traction boundary condi-
tions [Krö86, Wil77]. Properties of tensor ε∗

0
and σ∗

0

are, for reader’s convenience, summarized in Ap-
pendix A. Again, subscript 0 refers to the homoge-
neous reference medium.
Next, in analogy with the primary principle, we in-
troduce Eq. (2.51) into the dual variational principle
Eq. (2.48) to get

Uγ =
1

2

∫

Ω

(
Σ : E−(γ(x)−µ(x)) : (M(x)−M0)

−1 :

: (γ(x) − µ(x)) + 2γ(x) : Σ + γ(x) :

∫

Ω

σ∗
0
(x − x′) :

: (γ(x′) − 〈γ〉) dx′ − γ(x) : M−1
0 : (γ(x) − 〈γ〉)

)
dx

(2.52)

Assuming that each phase r of a randomly arranged
composite is homogeneous with the compliance ma-
trix Mr, r = 1, . . . , n, we write in analogy with Sec-
tion 2.2 the material compliance matrix, the polar-
ization strain γ and eigenstrain µ in the sample α
as

M(x, α) =

n∑

r=1

Mrχr(x, α), (2.53)

γ(x, α) =

n∑

r=1

γr(x)χr(x, α),

µ(x, α) =

n∑

r=1

µr(x)χr(x, α),

with the respective ensemble averages given by

M(x) =

n∑

r=1

MrSr(x), γ(x) =

n∑

r=1

γr(x)Sr(x),

µ(x) =

n∑

r=1

µr(x)Sr(x). (2.54)
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Suppose the material is again ergodic and statis-
tically homogeneous. Then, individual terms in
Eq. (2.54) simplify such that

M =

n∑

r=1

Mrcr, γ(x) =

n∑

r=1

γr(x)cr,

µ(x) =
n∑

r=1

µr(x)cr . (2.55)

Substituting Eqs. (2.53) and (2.55) into Eq. (2.52)
readily provides the extended averaged form of the
dual Hashin-Shtrikman principle

Uγ =
1

2

∫

Ω

Σ : Edx−

− 1

2

∑

r

∫

Ω

(
cr(γr(x) − µr(x)) : (Mr −M0)

−1 :

: (γr(x) − µr(x)) − 2crγr(x) : Σ
)
dx+

+
1

2

∑

r

∑

s

∫

Ω

γr(x) :

∫

Ω

σ∗
0
(x − x′) :

: [Srs(x − x′)γs(x
′) − cr〈γ〉] dx′dx−

− 1

2

∑

r

∫

Ω

crγr(x) : M−1
0 : (γr(x) − 〈γ〉) dx. (2.56)

In analogy with Eq. (2.33) we further admit only
piecewise uniform variation of eigenstrain vector µ

and polarization strain γ (µr(x) = µr, γr(x) = γr).
Next, after setting 〈γ〉 =

∑
r γrcr and performing

variation with respect to γr we arrive at the ex-
tended form of the stationarity conditions

[
(Mr −M0)

−1 + M−1
0

]
:γr(x)cr−

n∑

s=1

∫

Ω

{
σ∗
0
(x − x′) [Srs(x − x′) − crcs] + M−1

0 crcs

}
:

: γs(x
′)dx′ = Σcr + (Mr −M0)

−1µr(x)cr, (2.57)

for r = 1, 2, . . . , n. Using again the engineering no-
tation we get, in analogy with Eq. (2.33),

n∑

s=1

(
δrscr

(
([Mr] − [M0])

−1
+ [M0]

−1)− crcs [M0]
−1

− [Brs]
)
{γs} = cr{Σ}+ cr([Mr] − [M0])

−1{µr},
(2.58)

where evaluation of the microstructure-dependent
matrices [Brs] is again outlined in Appendix A.
Similarly to Eqs. (2.35) and (2.36) we write after sym-
bolic inversion of Eq. (2.58) the desired components

of the polarization tensor γr in the form

{γr} =

n∑

s=1

cs [Rrs]
(
{Σ} + ([Ms] − [M0])

−1{µs}
)
,

(2.59)
and finally

{γ} =

n∑

r=1

n∑

s=1

crcs [Rrs]
(
{Σ}+ ([Ms] − [M0])

−1{µs}
)
.

(2.60)
The macroscopic constitutive law is now given by

{E} =
[
M

HS
]
{Σ}+ {ΥHS}, (2.61)

with

[
M

HS
]

= [M0] +

n∑

r=1

n∑

s=1

crcs [Rrs] , (2.62)

{ΥHS} =

n∑

r=1

n∑

s=1

crcs [Rrs] ([Ms] − [M0])
−1{µs}

2.4. Numerical results

To make comparisons with the finite element ap-
proach and to motivate the analysis in the viscoelas-
tic range we consider afresh the graphite fiber tow of
Fig. 2(b). The primary goal is to recover the effective
thermo-elastic properties already derived in [ZS01]
and [SZS00].
Starting with the primary H-S variational principle,
Section 2.2, the thermo-elastic macroscopic constitu-
tive law receives the form

{Σ} =
[
L

HS
]
{E}+ {ΛHS}

=
[
L

HS
] (

{E} − {mHS}∆θ
)
, (2.63)

where {mHS} is the overall thermal strain vector of
the expansion coefficients;

[
LHS

]
and {ΛHS} follow

from Eqs. (2.38) and (2.39), respectively. Note that
the actual values depend on the choice of matrix [L0].
In particular, having properly chosen components of
the stiffness matrix of the comparison medium [L0]
we may arrive either at the lower or upper bound
on elastic stiffnesses of heterogeneous media (in the
sense of quadratic forms), while intermediate values
render estimates of effective stiffness matrix [DS99].
In particular, we select [L0] as an artificial material
with coefficients [L0]ij

<
>

[Lr]ij smallest (largest) of all
[Lr]ij in Ω.
The results appear in Table 3. Material properties of
individual phases are taken from Table 2. The FFT
combined with a suitable integration procedure is
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phase EA ET GT νA αA αT

[GPa] [GPa] [GPa] [K−1] [K−1]
fiber 386 7.6 2.6 0.41 −1.2× 10−6 7 × 10−6

matrix 5.5 5.5 1.96 0.40 2.4× 10−5 2.4 × 10−5

Table 2: Material properties of T30/Epoxy system

Bitmap L11 L22 L33

resolution LB FEM UB LB FEM UB LB FEM UB
244 × 179 10.759 10.762 10.772 10.716 10.725 10.727 2.211 2.215 2.216
488 × 358 10.755 10.762 10.766 10.712 10.725 10.722 2.210 2.215 2.215
976 × 716 10.754 10.762 10.765 10.711 10.725 10.721 2.210 2.215 2.215

Table 3: Effective elastic stiffnesses [GPa]

used to evaluate the microstructure dependent ma-
trices [Ars] (details are given in Appendix A) 2. The
thermal strain coefficients are obtained in the sim-
ilar way from the overall eigenstress {ΛHS}. In par-
ticular, the overall thermal strain {mHS} then follows
from

{mHS} = −
[
LHS

]−1 {ΛHS}, (2.64)

The results are summarized in Table 4.
If the stress control is applied the dual variational
principle Eq. (2.48) can be invoked to derive the
coefficients of the compliance matrix

[
MHS

]
from

Eq. (2.62). Similarly to the strain control, selecting
the individual entries of the compliance matrix [M0]
allow us to obtain either the lower or upper bound
on the effective elastic compliance matrix of a het-
erogeneous medium. In particular, we select [M0] as
an artificial material with coefficients [M0]ij

<
>

[Mr]ij
smallest (largest) of all [Mr]ij in Ω. Results are stored
in Table 5.
Eq. (2.62) can be further used to directly provide
the overall coefficients of thermal expansion. As
expected, they were found identical with those de-
rived from the primary variational principle. Similar
agreement between elastic stiffnesses and compli-
ances is evident from Table 6. Letters P and D in Ta-
ble 6 stand for the primary and dual variational prin-
ciples, respectively, and IP denotes the results ob-
tained from the primary variational principle when
assuming the statistically isotropic material.
Clearly, the finite element solutions fall within in-
dividual bounds provided by the Hashin-Shtrikman
variational principles. Tables 3 and 4 further demon-

2The UB and LB columns in Tables 3–6 correspond to the lower
bound (the matrix [L0] with the smallest entries) and to the upper
bound (the matrix [L0] selected with the largest entries), respec-
tively.

strate insensitivity of the solution to the selected
bitmap resolution, as long as the volume fraction of
the inclusion is the same. In addition, attributed to
the assumed statistical homogeneity, the results con-
firm a slight anisotropy of the present medium. In
terms of computer time, the efficiency of the present
approach when compared to the FEM analysis is ob-
vious. Nevertheless, to fully accept this method a
number of other numerical assessment, particularly
for more complex material behavior, are needed.

3. MATERIAL MODEL FOR POLYMERS

As suggested by the title one of the objectives here
is to study the nonlinear material response of poly-
mer matrix based composites. As an example we
select a graphite/epoxy material system. The fiber
is assumed to remain elastic during deformation so
that the inelastic effects are limited to the matrix
phase. For the composite structure plotted in Fig. 1
the PR100/2+EM100E epoxy is used as a bonding
agent. An experimental program carried out on this
type of material [VS03] demonstrates a relevant rate
dependent response of the epoxy well described by
the generalized Leonov model. Although some ex-
perimental observations advocate a pressure depen-
dent behavior of such materials [KL97] the present
approach assumes negligible volume deformation
during plastic flow, which leads to a standard Mises-
like formulation.

3.1. Leonov model

Combing the Eyring flow model for the plastic com-
ponent of the shear strain rate

dep

dt
=

1

2A
sinh

τ

τ0
, (3.1)
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Bitmap αx × 10
5

αy × 10
5

αz × 10
7

cf

resolution LB FEM UB LB FEM UB LB FEM UB
244 × 179 2.271 2.269 2.281 2.246 2.248 2.254 -7.463 -7.463 -7.468 0.436
488 × 358 2.267 2.269 2.275 2.244 2.248 2.250 -7.461 -7.463 -7.465 0.436
976 × 716 2.267 2.269 2.275 2.243 2.248 2.249 -7.460 -7.463 -7.464 0.436

Table 4: Effective coefficients of thermal expansion [K−1]

Bitmap M11 M22 M33

resolution LB FEM UB LB FEM UB LB FEM UB
244 × 179 1.4293 1.4307 1.4312 1.4312 1.4325 1.4330 4.5168 4.52115 4.5235
488 × 358 1.4298 1.4307 1.4317 1.4316 1.4325 1.4334 4.5182 4.52115 4.5246
976 × 716 1.4298 1.4307 1.4318 1.4317 1.4325 1.4334 4.5185 4.52115 4.5250

Table 5: Effective elastic compliances [GPa−1] ×10−4

with the elastic shear strain rate dee/dt yields the
one-dimensional Leonov constitutive model [Leo76]

de

dt
=

dee

dt
+

dep

dt
=

dee

dt
+

τ

η(dep/dt)
, (3.2)

where the shear-dependent viscosity η is provided
by

η(dep/dt) =
η0τ

τ0 sinh(τ/τ0)
= η0aσ(τ). (3.3)

In Eq. (3.1), A and τ0 are material parameters; aσ

that appears Eq. (3.3) is the stress shift function
with respect to the zero shear viscosity η0 (viscosity
corresponding to an elastic response). Clearly, the
phenomenological representation of Eq. (3.2) is the
Maxwell model with the variable viscosity η.

To describe multi-dimensional behavior of the ma-
terial, the generalized compressible Leonov model,
equivalent to the generalized Maxwell chain model,
can be used [Ter96]. The viscosity term correspond-
ing to the µ-th unit receives the form

ηµ = η0,µaσ(τeq), (3.4)

where the equivalent shear stress τeq is provided by

τeq =

√
1

2
sijsij , (3.5)

and sij is the stress deviator tensor. Admitting only
small strains and isotropic material, a set of consti-
tutive equations defining the generalized compress-

ible Leonov model can be written as

σm = Kεv, (3.6)

ds

dt
=

M∑

µ=1

2Gµ

(
de

dt
− dep,µ

dt

)
, (3.7)

sµ = 2ηµ

dep,µ

dt
= 2η0,µaσ(τeq)

dep,µ

dt
, (3.8)

s =

M∑

µ=1

sµ, (3.9)

where σm is the mean stress, εv is the volumetric
strain, K is the bulk modulus and Gµ is the shear
modulus of the µ-th unit.

3.2. Numerical implementation

In classical uncoupled multi-scale computational
homogenization the analysis assumes separate so-
lutions of the boundary value problems carried out
at individual scales and linked such that the solu-
tion of one serves as the input for the other. Since
the present contribution is concerned with the anal-
ysis on microscale it requires the solution derived
on meso-scale to be passed on in form of the ap-
plied load increment as an input. For the compos-
ite geometry in Fig. 1(b) such data are usually de-
rived using the finite element method [Wie00]. In
standard displacement based formulation the pri-
mary variable supplied to micro-scale is an incre-
ment of the mesoscopic overall strain at a given in-
tegration point found for a given increment of the
macroscopic load. Such loading conditions thus fit
well with the primary Hashin-Shtrikman variational
principle addressed in Section 2. Some specifics of
the principle pertinent to the nonlinear viscoelastic
response of the matrix phase will be now given.
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Bitmap IP-LB P-LB D-LB P-UB D-UP IP-UB IP-LB P-LB D-LB P-UB D-UP IP-UB
resolution L11 L11 M

−1

11
L11 M

−1

11
L11 L33 L33 M

−1

33
L33 M

−1

33

244 × 179 10.744 10.759 10.759 10.772 10.772 10.754 2.211 2.211 2.213 2.216 2.216 2.214
488 × 358 10.744 10.755 10.755 10.766 10.766 10.754 2.211 2.210 2.210 2.215 2.215 2.214
976 × 716 10.744 10.754 10.754 10.765 10.765 10.754 2.211 2.210 2.210 2.215 2.215 2.214

Table 6: Comparison of primary and dual principles

To extend the class of problems represented by
Eqs. (2.37), (2.61) beyond the thermo-elastic re-
sponse we examine the overall behavior and local
fields in a fibrous composite system in Fig. 2 assum-
ing elastic-nonlinear viscoelastic phases. Introduc-
ing nonlinear effects requires to write Eq. (2.37) in
the incremental form as

{∆Σ(ti)} =
[
LHS(ti)

]
{∆E} + {∆ΛHS(ti)}, (3.10)

where
[
LHS(ti)

]
represents the instantaneous stiff-

ness matrix at a time instant ti derived from
Eq. (2.37) and {∆ΛHS(ti)} is the current increment of
the mesoscopic eigenstress Eq. (2.37) that stores con-
tribution due to nonlinear viscoelastic response. The
local counterparts of Eq. (3.10) are provided by

{∆σf} = [Lf ] {∆εf}, (3.11)

{∆σm(ti)} =
[
Lm(K, Ĝ(ti)

]
{∆εm} +

+ {∆λm(ti)}, (3.12)

where in accordance with our assumption [Lf ] stands
for the time independent elastic stiffness matrix of
the fiber phase with no viscoelastic contribution to
the overall local strain. The instantaneous stiffness
matrix of the matrix phase

[
Lm(K, Ĝ(ti)

]
, however,

evolves with time and is written in terms of the time
independent bulk modulus K and the instantaneous
time dependent shear modulus Ĝ(ti). Together with
the matrix eigenstress increment {∆λm(ti)} it fol-
lows from a suitable integration procedure applied
to the set of Eqs. (3.6)-(3.9).

Fully implicit integration scheme

To avoid possible numerical instabilities linked to
explicit integration schemes a fully implicit Euler
backward integration procedure is developed. Pro-
viding the total strain rate is constant during inte-
gration a new state of stress in the matrix phase
at the end of the current time step assumes the
form (subscript m, identifying the matrix phase, is

dropped from subsequent equations)

σm(ti) = σm(ti−1) + K∆εv, (3.13)
{s(ti)} = {s(ti−)} +

+ 2Ĝ(ti) [Q] {∆e} + {∆λ(ti)}, (3.14)

where ti is the current time at the end of the i-th
time increment; σm(ti) is the elastic means stress,
{s(ti)} stores the deviatoric part of the stress vector
{∆σ(ti)} and {∆e} is the deviatoric part of the to-
tal strain increment. With reference to the backward
Euler integration scheme the time dependent vari-
ables at time instant ti receive the form

Ĝ(ti) =

M∑

µ=1

Gµ

θµaσ(ti)

∆t

(
1 − exp

(
− ∆t

θµaσ(ti)

))
, (3.15)

{∆λ(ti)} =

−
M∑

µ=1

(
1 − exp

(
− ∆t

θµaσ(ti)

))
{sµ(ti−)}, (3.16)

where Gµ represents the elastic shear modulus in the
µ-th unit of the Maxwell chain model, θµ is the as-
sociated relaxation time, {sµ(ti)}, µ = 1, 2, . . . , M ,
is the deviatoric stress vector in individual units
evaluated at the beginning of a new time increment
∆t = ti − ti−1, and M is the assumed number of
Maxwell units in the chain model; aσ(ti) is the stress
shift factor given by

aσ(ti) =
τeq(ti)

τ0
/ sinh

τeq(ti)

τ0
, (3.17)

where the equivalent stress τeq(ti) follows from

τeq(ti) =

√
1

2
{s(ti)}T [Q]

−1 {s(ti)}, (3.18)

and

[Q] = diag
[
1, 1, 1,

1

2
,
1

2
,
1

2

]
. (3.19)
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Clearly, the backward Euler step makes all vari-
ables nonlinearly dependent on the end stress val-
ues found at time ti. Therefore, a successful com-
pletion of a given integration step requires the so-
lution of a system of nonlinear equations. Here,
the solution is established employing the Newton-
Raphson method. To that end, define a set of resid-
uals {r} = {T, G, A} T as

T = τeq(ti) −
√

1

2
{s(ti)}T [Q]

−1 {s(ti)},

G = Ĝ(ti) −

−
M∑

µ=1

Gµ

θµaσ(ti)

∆t

(
1 − exp

(
− ∆t

θµaσ(ti)

))
,

A = aσ(ti) −
τeq(ti)

τ0
/ sinh

τeq(ti)

τ0
,

with
{a} = {τeq(ti), Ĝ(ti), aσ(ti)}T, (3.20)

being the primary variables. Note that the current
increment of the eigenstress vector {∆λ(ti)} that ap-
pears in Eq. (3.14) is considered as a secondary vari-
able. Under the condition that {∆e} is constant the
Newton-Raphson iterative scheme reads

{a}k+1(ti) = {a}k(ti) − [H]
−1 {r}k, (3.21)

where the Jacobian matrix [H] is given by

[H] =




∂T
∂τeq

dT

dĜ

dT
daσ

∂G
∂τeq

∂G

∂Ĝ

∂G
∂aσ

∂A
∂τeq

∂A

∂Ĝ

∂A
∂aσ




. (3.22)

The total differentials in matrix [H] follow from the
chain rule

dT

dĜ
=

∂T

∂Ĝ
+

{
∂T

∂∆λ

}
T

{
∂∆λ

∂Ĝ

}
, (3.23)

dT

daσ

=

{
∂T

∂∆λ

}
T

{
∂∆λ

∂aσ

}
. (3.24)

The initial values of primary variables at time ti for
k = 0 are set to forward Euler estimates. Once the
time dependent variables are known at time ti the
updated stress vectors {sµ(ti)} is found from

{sµ(ti)} = {sµ(ti−)} exp

( −∆t

θµaσ(ti)

)
+

+ 2Gµ

θµaσ(ti)

∆t
× (3.25)

×
(

1 − exp

(
− ∆t

θµaσ(ti)

))
[Q] {∆e}.

The above approach is used in Section 4 to derive
the results for the selected example problems. In
addition, comparisons with fully explicit integra-
tion scheme printed in one-dimensional format fur-
ther highlight the superiority of the backward Eu-
ler method that allows for a substantially longer
time increment with no signs of oscillations, see Ap-
pendix B for more refined discussion.

4. NUMERICAL EXAMPLES

To illustrate the proposed procedure, we examined
the time dependent response of the material system
addressed already in Section 2.4. Note that the ma-
terial properties listed in Table 2 correspond to the
graphite fibers and PR100/2+EM100E epoxy matrix.
The parameters of the Leonov model were deter-
mined from a set of creep experiments performed
at various stress levels. Ten elements of the gener-
alized Kelvin-Voight chain model were used to ob-
tain an accurate description of the linear compliance
function. Laplace transform was then used to invert
the creep compliance function (see [VS03] for more
details). The resulting coefficients needed in the gen-
eralized Maxwell chain model appear in Table 7.

Parameter Value
A [s] 4.854× 1014

τ0 [MPa] 1.57
K [MPa] 5030

µ θµ Gµ

[MPa·s] [MPa]
1 1.4664× 101 1.1479× 100

2 1.0194× 103 1.0293× 101

3 2.4024× 104 2.4589× 101

4 2.7624× 105 2.8396× 101

5 2.9746× 106 3.0671× 101

6 4.6200× 107 4.2446× 101

7 4.7063× 108 4.9675× 101

8 5.7611× 109 6.1870× 101

9 8.9183× 1010 1.0178× 102

10 7.2765× 1013 7.2765× 102

Table 7: Nonlinear viscoelastic material properties of
PR100/2+EM100E epoxy matrix

As indicated in the previous sections, only the load-
ing due to constant overall strain rate is considered
and the analysis is again carried out assuming gen-
eralized plane strain. Also, based on the results de-
rived for linear viscoelasticity [SZ02b], the reference
stiffness matrix [L0] is selected as the smallest of all
[Lr]ij .

Volume x, Number y, 200z



16 M. ŠEJNOHA ET AL.

First, the sensitivity of the overall response with re-
spect to the choice of the reference stiffness matrix
[L0] is analyzed. To study this influence, the ratio
|1 − Ĝ(ti)/Ĝref | was used to control the update of
the reference medium. If this ratio exceeded a given
tolerance ξ, the reference value Ĝref was set to Ĝ(ti),
the reference stiffness matrix [L0] was accordingly
modified and the associated microstructural matri-
ces were reevaluated. Since this is just a test study,
the results that appear in Fig. 6 were derived for a
statistically isotropic microstructure with the same
fiber volume fraction as the original material. Ap-
parently, the H-S based procedure is rather insensi-
tive to updating tolerance; to get practically indistin-
guishable overall response it suffices to set ξ = 0.01.
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12
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ξ=��10
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Figure 6: Sensitivity with respect to reference
medium update, hexagonal packing for Ė12 =
10−4 s−1

Next, an effect of a bitmap resolution on the overall
response of the real, statistically non-isotropic, com-
posite material system is addressed. Similarly to the
thermoelasticity case, the results displayed in Fig. 7
again demonstrate the insensitivity of the overall
response to a bitmap resolution; in particular, the
bitmap with dimensions 488 × 358 pixels gives re-
sults identical to the highest resolution 976×716 pix-
els for both E11 and E12 loading.
The next set of figures, Figs. 8(a,b), shows the over-
all response for various overall transverse and shear
strain rates. Evidently, the overall response of the
composite is almost rate independent for the E11

loading. This is attributed to the fact that the re-
sponse is governed by elastic fibers while the shear
stresses in matrix remain too low to trigger the plas-
tic flow. The results found for the shear loading E12,
however, demonstrate the ability of the H-S based
approach to correctly represent the rate dependent

response of the matrix phase.
Finally, for the sake of completeness, the slightly
anisotropic character of the examined material sys-
tem already suggested by thermoelastic analysis, Ta-
ble 3, is demonstrated by plotting phase stresses due
to E11 and E22 loading, see Figs. 9(a) and 9(b). This
result cannot be obtained when using statistically
isotropic microstructures, as typically done in ana-
lytical modeling approaches.

5. CONCLUSIONS

Homogenized mesoscopic response of fiber tow
with disordered distribution of graphite fibers in
the epoxy matrix was analyzed for loading condi-
tions that promote evolution of local eigenstresses
or eigenstrains. Contributions due to thermal and
nonlinear viscoelastic effects were considered. The
homogenized (effective) response of the compos-
ite system was found with the help of the Hashin-
Shtrikman variational principles that make possible
to account, at least to some extend, for a typical ran-
dom character of real microstructures by introduc-
ing the low order statistical descriptors such as the
one- and two-point probability functions into their
formulation.
Color images of real microstructure, obtained by
scanning electron microscope and converted into
their binary counterparts using the image analyzer
LUCIA, were used to evaluate the desired statisti-
cal descriptors. To that end, a fairly efficient pro-
cedure that combines the knowledge of a real mi-
crostructure given in a binary form with a Dis-
crete Fourier Transform of individual variables was
implemented. Note that only representation of
the two-point probability function in the Fourier
space is needed for the evaluation of microstruc-
ture dependent matrices [Ars] and [Ars], Eqs. (A.13)-
(A.14). Such a representation readily admits selec-
tion of a generally anisotropic comparison medium,
which usually arises in estimation of bounds, recall
Eqs. (A.4)-(A.9).
In this framework, both the primary and dual vari-
ational principles were revisited to provide bounds
on elastic and thermal properties of a selected mate-
rial system assuming statistically uniform distribu-
tion of reinforcements. As expected, both the dis-
placement and traction boundary conditions can be
employed to deliver the same results as shown in
Table 6. The results presented in Tables 3, 4 and
5 further suggest a slight anisotropy of the present
medium, which cannot be captured when simply as-
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Figure 7: Effect of a bitmap resolution (a) Ė11 = 10−4 s−1, (b) Ė12 = 10−4 s−1
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Figure 8: Overall response, (a) Ė11 loading, (b) Ė12 loading.
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suming a statistical isotropy of a medium. This is
also supported by the results derived from the finite
element analysis on periodic unit cells, [ZS01].
In the context of initial stresses this methodology
was extended to treat nonlinear effects. In particu-
lar, the nonlinear viscoelastic response of the matrix
phase governed by the generalized Leonov model
was examined. The results suggest essentially a lin-
ear behavior when loading the composite by E11

or E22 components of the overall strain. The rate
dependent behavior, however, was confirmed for
loading conditions that activate yielding in the ma-
trix phase, Figs. 8. Figs. 9 further confirm a slight
anisotropy already reported for the effective elas-
tic moduli. More pronounced difference in the di-
rectional response is expected for material systems
with higher material contrast in the transverse elas-
tic moduli of the two phases.
To enhance efficiency and stability of numerical
analysis, the integration of time dependent matrices
is implemented in the fully implicit format. The ex-
pected advantages of this technique over the fully
explicit approach are demonstrated in Appendix B
on a simple one-dimensional problem.
In summary, the use of the Hashin-Shtrikman vari-
ational principles should considerably speed up the
micromechanical analysis at least on the level of con-
stituents thus enhance the overall efficiency of large
multi-scale calculations. Although applications of
averaging techniques on mesoscale (woven compos-
ites) received some attention, their use in nonlinear
environment is questionable.

Acknowledgments

Financial support was provided partially by the
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A. EVALUATION OF MATRICES [Ars] AND [Brs]

A.1. The Fourier transform of tensors ε∗0 and σ∗
0

In Section 2 we introduced the fourth order tensor
(ε∗0)ijkl related to the fundamental solution (u∗

0)ij .
Specific forms of these quantities for a homogeneous
and isotropic material and certain special cases of
anisotropic materials can be found, e.g., in [BS96,
Mur87]. Their Fourier transforms, however, needed
for evaluation of matrices [Ars] and [Brs] in Eqs. (2.34)
and (A.14), deserve more attention.
First, consider the tensor (ε∗0)ijkl derived by differ-
entiating the so-called fundamental solution u∗

pi that

satisfies the Lamé equation

(L0)ijkl(u
∗
0)pk,lj(x − x′) + δpiδ(x − x′) = 0, (A.1)

It represents the displacements in the i direction at a
point x due to a unit point force applied at a point x′

in the direction p. Similarly, tensor ε∗pij given by

(ε∗0)pij =
1

2
((u∗

0)pi,j + (u∗
0)pj,i), (A.2)

then corresponds to the strains at a point x due to
a unit point force applied at a point x′ in the pth di-
rection. As shown in, e.g., [Krö86, Wil77], the fourth
order tensor (ε∗0)ijkl follows directly by differentiat-
ing Eq. (A.2).

(ε∗0)ijkl(x) =
1

4

(
(u∗

0)ik,lj (x) + (u∗
0)il,kj (x)+

+ (u∗
0)jk,li(x) + (u∗

0)jl,ki(x)
)
. (A.3)

Hence, according to definition, the Fourier trans-
form of Eq. (A.3) can be written in the form

(̃ε∗0)ijkl
(ξ) = −1

4

(
(̃u∗

0)ik
(ξ)ξlξj + (̃u∗

0)il
(ξ)ξkξj+

+ (̃u∗
0)jk(ξ)ξlξi + (̃u∗

0)jl(ξ)ξkξi

)
. (A.4)

Similarly, the Fourier transform of Eq. (A.1) reads

−(L0)ijklξiξl(̃u∗
0)jm(ξ) + δkm = 0, (A.5)

so that
(̃u∗

0)jk(ξ) = ((L0)ijklξiξl)
−1

. (A.6)

The Fourier transform of the tensor (̃σ∗
0)ijkl is given

by

(̃σ∗
0)ijkl = −(L0)ijpq (̃ε∗0)pqrs(L0)rskl. (A.7)

The engineering form of tensors (̃ε∗0)ijkl and (̃σ∗
0)ijkl

for the generalized plane strain are

[
ε̃∗
0

]
=




(̃ε∗0)1111 (̃ε∗0)1122 2(̃ε∗0)1112 0

(̃ε∗0)1122 (̃ε∗0)2222 2(̃ε∗0)2212 0

2(̃ε∗0)1112 2(̃ε∗0)2212 4(̃ε∗0)1212 0
0 0 0 0


 ,

(A.8)
and [

σ̃∗
0

]
= − [L0]

[
ε̃∗
0

]
[L0] , (A.9)

where the last row and column in matrix
[
ε̃∗
0

]
were

augmented by zeros to comply with the generalized
plane strain assumption.
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To make a final comment we draw the reader’s at-
tention to Eqs. (A.4) and (A.7) which suggest that
the Fourier transform of ε̃∗

0
and σ̃∗

0
can be easily ob-

tained for any homogeneous anisotropic reference
medium, which is not generally possible for func-
tions ε∗

0
and σ∗

0
.

A.2. Microstructural matrices

Consider Eq. (2.34) to write the microstructure-
dependent matrices [Ars] in the form

[Ars] =

∫

Ω

[ε∗0 ] (x − x′) (Srs(x − x′) − crcs) dx′

=

∫

Ω

[ε∗0 ] (x − x′)S′
rs(x − x′)dx′

=

∫

Ω

[ε∗0 ] (x)S′
rs(x)dx, (A.10)

where S′
rs denotes the fluctuating part of Srs under

the no-long range orders hypothesis. Next, recall the
definition of the Fourier transform to observe that
the preceding formula can be written as

[Ars] =

∫

Ω

[ε∗0 ] (x)S′
rs(x)dx

=

[∫

Ω

[ε∗0 ] (x)S′
rs(x)eix·ξdΩ(x)

]

ξ=0

= F [[ε∗0 ] (x)S′
rs(x)]ξ=0 . (A.11)

Eq. (A.11) can be further modified to get (see
[DW96])

[Ars] =
1

(2π)2

[∫

Ω

[̃ε∗
0
](ξ − ξ′)S̃′

rs(ξ
′)dξ′

]

ξ=0

=
1

(2π)2

∫

Ω

[̃ε∗
0
](−ξ

′)S̃′
rs(ξ

′)dξ
′ (A.12)

Since ε̃∗
0
(−ξ) = ε̃∗

0
(ξ), see Eq. (A.4), we finally arrive

at

[Ars] =
1

(2π)2

∫

Ω

[̃ε∗
0
](ξ′)S̃′

rs(ξ
′)dξ′. (A.13)

Similar procedure then provides

[Brs] =
1

(2π)2

∫

Ω

[̃σ∗
0
](ξ′)S̃′

rs(ξ
′)dξ′. (A.14)

Thus knowing the values of S̃′
rs we may evaluate

integrals (A.13) and (A.14) by an appropriate numer-
ical integration procedure.
We close this section by introducing certain univer-
sal connections for matrices [Ars] and [Brs] evaluated

for the two-phase composite medium. In particular,
recall Eq. (2.5) to write function S ′

rs as

S′
rs(x,x′) = χr(x, α)(χs(x′, α) − Ss(x′))

= (χr(x, α) − Sr(x))χs(x′, α). (A.15)

The above relation together with Eq. (2.3) implies
that

S′
mm = Smm − S2

m,

S′
ff = Smm − S2

m = S′
mm, (A.16)

S′
fm = S′

mf − S′
mm. (A.17)

Introducing relations (A.16) into Eq. (A.10) yields

[Amm] = [Aff ] = − [Amf ] ,

[Bmm] = [Bff ] = − [Bmf ] . (A.18)

It now becomes clear that only a single matrix, say
[Amm], needs to be evaluated numerically, which
substantially decreases the computational effort. In-
troducing auxiliary matrices

[A] = [Amm] ,

[B] = cmcf [M0]
−1 − [Bmm]

[Kr] = [Lr] − [L0] ,

[Nr] =
(
([Mr] − [M0])

−1
+ [M0]

−1
)−1

we can finally obtain, with the help of Eq. (A.18), the
matrices [Trs] and [Rrs] in the form

[Trs] = [Kr]
(
cf [Km] + cm [Kf ] − cf cm [A]

−1
)

(A.19)
(
[Kf ] + [Km] − [Kr] + δrs(1 − cr) [A]

−1
)

,

[Rrs] = [Nr]
(
cf [Nm] + cm [Nf ] − cf cm [B]

−1
)

(A.20)
(
[Nf ] + [Nm] − [Nr] + δrs(1 − cr) [B]

−1
)

.

B. NUMERICAL INTEGRATION OF THE LEONOV
MODEL IN THE ONE-DIMENSIONAL SETTING

Here we present a brief comparison between the
fully implicit integration scheme proposed in Sec-
tion 2.4 and the fully explicit procedure with for-
ward integration step often used in linear viscoelas-
tic analysis. To keep the discussion simple we limit
our attention to an one-dimensional problem.
To introduce the subject consider Fig. 10(a) showing
a typical uniaxial response of the PR100/2+EM100E
epoxy subjected to a constant tensile strain rate. The
plotted curves are found for ε̇x = 5 × 10−3 s−1. The
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Figure 10: (a) experiment vs. numerical simulation,
(b) variation of aσ

solid line is obtained experimentally while the oth-
ers follow from the numerical analysis using the two
integration schemes with the largest possible time
increments, for which now stability problems oc-
curred.
Fig. 10(a) suggests that in order to avoid numerical
instabilities with the explicit forward Euler method
a relatively short time increment must be prescribed.
This becomes clear once we recall the basic ingre-
dient of the method, which is the assumption that
all time dependent parameters are taken, for the for-
ward integration step, from the beginning of a new
time increment and are kept constant. This assump-
tion clearly breaks down for the stress shift parame-
ter aσ , which is a highly nonlinear function of stress
and rapidly approaches zero with increasing stress
level as demonstrated in Fig. 10(b). This method,
however, is extremely simple to implement and re-
quires only a few calculations per time integration
step. Nevertheless, the conditional stability may
be the major obstacle in successful implementation
within the framework of large multi-scale computa-

tion.
A rather different numerical response is evident for
the fully implicit integration scheme. Although at a
slight expense of accuracy, the stable behavior out-
last even for a relatively large time step. On the
other hand, a local Newton-Raphson iteration is re-
quired to arrive at correct values of the time depen-
dent variables at the end of a given time step. While
this may slow down the local integration, a signifi-
cant reduction in number of required time steps may
eventually prove beneficial. To complete our discus-
sion on this subject the one-dimensional counterpart
of Eqs. (3.13)-(3.18) is now given.
Equations driving the one-dimensional tensile vis-
coelastic response are

σ(ti) = σ(ti−1) + Ê(ti) (∆ε − ε̂(ti)) ,

Ê(ti) =

M∑

µ=1

Eµ

θµaσ(ti)

∆t
×

×
(

1 − exp

(
− ∆t

θµaσ(ti)

))
,

ε̂(ti) =
1

Ê(ti)
×

×
M∑

µ=1

(
1 − exp

(
− ∆t

θµaσ(ti)

))
σµ(ti−),

τeq(ti) =
σ(ti)√

3
,

aσ(ti) =
τeq(ti)

τ0
/ sinh

τeq(ti)

τ0
.

The vector of residuals {r} = {T, G, A}T in Newton-
Raphson iteration step now becomes

T = τeq(ti) −

− 1√
3

(
σ(ti−1) + Ê(ti) (∆ε − ∆ε̂(ti))

)
,

G = Ê(ti) −

−
M∑

µ=1

Eµ

θµaσ(ti)

∆t

(
1 − exp

(
− ∆t

θµaσ(ti)

))
,

A = aσ(ti) −
τeq(ti)

τ0
/ sinh

τeq(ti)

τ0
,

where the vector of unknowns receives the form

{a} = {τeq(ti), Ê(ti), aσ(ti)}T. (B.1)

The required derivatives that appear in the Jacobian
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matrix [H], Eq. (3.21), are listed in a sequel:

∂T

∂τeq

= 1,
dT

dÊ
= −∆ε√

3
,

∂G

∂τeq

= 0,

∂G

∂Ê
= 1,

∂A

∂Ê
= 0,

∂A

∂aσ

= 1.

dT

daσ

= − 1√
3

M∑

µ=1

exp

(
− ∆t

θµaσ(ti)

)
∆t

θµa2
σ(ti)

×

× σµ(ti−1).

∂G

∂aσ

=

M∑

µ=1

Eµ

aσ(ti)
exp

(
− ∆t

θµaσ(ti)

)
−

− Eµθµ

∆t

(
1 − exp

(
− ∆t

θµaσ(ti)

))
.

∂A

∂τeq

=
cosh

(
τeq(ti)

τ0

)
τeq(ti)

τ2

0

− 1
τ0

sinh
τeq(ti)

τ0

sinh2
(

τeq(ti)
τ0

) ,

Since the Newton-Raphson is only locally conver-
gent, the crucial point in a successful implementa-
tion is an estimate of the initial solution. This is
also the reason, while for very large steps > 60 s the
method started to diverge very rapidly. On the con-
trary, for a “reasonable” time step a forward Euler
estimate of the initial solution proved to be a good
choice. For the one-dimensional setting the initial
conditions are

{a} =





σ(ti)

Ê(σ(ti))
aσ(σ(ti))





{r} =





τeq(ti) − τ̂eq(ti)
0
0





where σ(ti) = σ(ti−1) + Ê(ti−1) (∆ε − ε̂(ti−1)) and
τ̂eq(ti) = 1√

3

(
σ(ti) + Ê(ti) (∆ε − ∆ε̂(ti))

)
.

The results displayed in Figs. 11- 12 provide fur-
ther notion about both methods when applied to the
present problem. While for the forward (fully) ex-
plicit method the results in Fig. 11 show an oscil-
latory response attributed to the assumed constant
stress shift parameter aσ over a given time step, no
such behavior was observed for the backward (fully)
implicit method for all time increments marked with
the success in convergence of the Newton-Raphson
iteration. Finally, Table 8 shows the rate of conver-
gence in terms of the average and maximum number
of iterations needed to achieve the given prescribed
error.
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Figure 11: Fully explicit integration scheme
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Figure 12: Fully implicit integration scheme

Time step Avg. No. of iter. Max. No. of iter.
8 4 6

20 5 8
30 10 25
40 14 26
45 12 24

Table 8: Number of iterations required to reach a
residuum norm ‖r‖ =

√
{r}T{r} < 10−8
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