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Abstract

The multiscale analysis has become a common tool in the study of many compli-
cated structures such as composites. In this regard, two possible modeling strategies,
so called coupled and uncoupled approaches, are available. While the uncoupled ap-
proach treats individual scales separately and thus divides the analysis typically into
two or three mutually independent steps, the coupled approach allows combining
analyses at all scales in a common framework. Clearly, formulation of a macroele-
ment belongs to the group of coupled approaches. It starts from meshing the micro
or mesostructure into a net of finite elements with associated global stiffness matrix.
All inner degrees of freedom (dofs) of the finite element mesh are then condensed
out together with applying certain multipoint constraints to unwanted boundary
degrees of freedom. The resulting macroelement stiffness matrix establishes the
scale to scale interface (micro-meso, meso-macro). This approach is introduced
here in conjunction with the analysis of complex wound composite tubes. A num-
ber of numerical examples are presented to support applicability of the proposed
approach.

1 Introduction

Undoubtable benefits offered by composite materials such as high strength, light weight,
non-corrosive properties, etc., have recently attracted many design engineers in the civil
engineering industry, primarily in conjunction with rehabilitation and repair of concrete
and masonry structures. A lucid discussion on this subject is given in (Šejnoha, 1999).

It is a well-understood and widely accepted fact that an overall response of composite
structures is highly influenced both by the material behavior and geometrical arrangement
of distinct phases of the composite system. Such a research venture inevitably calls for
analyses on different length scales. However, each scale of modeling is typically several
orders of magnitude smaller that the preceding one, which makes the direct “brute force”
approach, relying on detailed description of the whole structure with all details present,
practically intractable even on modern powerful computers. Therefore, to obtain a real-
istic prediction of the behavior of the whole structure, a suitable method of attack that
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efficiently combines the analysis on individual scales of the structure, is needed. Thus the
solution strategies based on multiscale analysis appear as a natural choice, see, e.g., (Fish,
1992; Fish et al., 1997, 1999; Kouznetsova et al., 2002). General overview of various mul-
tiscale techniques can also be found in (Zeman, 2003; Wierer, 2005). Regardless of the
method used, it is clear that a reliable transfer of required information between various
modeling levels is crucial for the success of the selected method.

Various multi-scale computational techniques available in the literature can be in-
cluded in the following categories:

1. Multiple scale expansion methods - These methods are sometimes called uncoupled.
Generally, they are based on the separate homogenization at individual modeling
levels and the results from lower level are used as an input for the analysis on higher
level.

2. Superposition based methods (coupled approach) - Contrary to uncoupled methods
the coupled approaches build on mutually dependent homogenization on individual
scales. As such, this approach can include nonlinear behavior including failure
analysis on every scale much easily compared to uncoupled problem.

The approach based on the formulation of a certain macroelement, successfully used in
the analysis of textile composites (Whitcomb et al., 1994), fits well within the framework
of coupled methods. In the present vocabulary, the construction of such element com-
bines static condensation and application of multipoint constrains resulting in a global
macroelement stiffness matrix directly applicable in the macroscopic analysis.

The benefits of this method can be well appreciated in the case of woven composites,
where the difference between individual scales is relatively small so that the classical
homogenization techniques, which draw on the existence of macroscopically uniform stress
and strain fields over a sufficiently large portion of meso (micro) geometry, cannot be
involved. Homogenization of such material systems is also the main objective of the
present contribution.

The paper is divided as follows. The theoretical background for the present approach
is outlined in the first section. The next section reviews essential steps of the use of
macroelement in coupled multiscale analysis. Several numerical examples are offered in
Section 4 to show both advantages and disadvantages of the suggested approach when
applied to the multiscale modeling of woven composites. Although the proposed approach
is applicable for coupling of any adjacent scales, we limit our attention to two-scale com-
posite with a well defined geometry on mesoscale, Fig. 1. Thus only the transition from
meso to macroscale is assumed throughout the remaining part of this paper.

2 Theoretical background

Recently, continuum elements have been developed to account for a textile and wo-
ven type microstructure within a single element. For more details see (Foye, 1988;
Woo and Whitcomb, 1992). The elements described in these references are based on a
single assumed displacement field throughout the entire element. A more general element
formulation that includes the single field approximation as a degenerate state is presented
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Figure 1: Wound composite tube on macroscale and mesoscopic unit cell

herein. This formulation is an example of element reduced substructuring (Kamel et al.,
1972).

In brief, the implementation starts from the development of an ordinary finite element
mesh for a certain mesoscopic unit cell (MUC). Such MUC often arises from the periodic
character of the composite geometry, Fig. 1. In the next step, the interior degrees of free-
dom are statically condensed out. Next, a number and locations of the desired boundary
degrees of freedom are selected. Finally, the original boundary degrees of freedom are
expressed in terms of the selected boundary degrees of freedom linked to so called master
nodes.

To illustrate the process of substructuring, consider, as an example, a mesoscopic finite
element mesh in Fig. 2. Assume that the governing equations are partitioned as follows

(

KAA KAB

KBA KBB

) (

qA

qB

)

=

(

FA

FB

)

, (1)

where KXX are submatrices of the global stiffness matrix, FX are nodal forces, qA is the
vector of unknowns to be condensed out and qB are unknowns, which will remain. The
resulting reduced stiffness matrix and the corresponding load vector assume the form

KBB = KBB − K
−1

AAKAB (2)

FB = FB − K
>

ABK
−1

AAFA. (3)

This procedure is often not practical owing to large matrix multiplications as a conse-
quence of matrix inversion that destroys the sparsity in KAA. The elimination of internal
degrees of freedom, however, can be also accomplished using the Gauss elimination if the
degrees of freedom to be eliminated are grouped together either at the beginning or at
the end of the list of unknowns. To that end, assume that the degrees of freedom to
be eliminated (the number is nA) are stored at the beginning of the list of unknowns.
The direct Gauss elimination procedure is then applied to nA columns (i.e., removing nA

columns). In summary, this procedure reads:

1. For i = 1 to nA begin:
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Figure 2: Example of finite element mesh for mesoscopic unit cell

2. For j = i to n begin:

3. For s = i to n begin:

4. Kjs = KiiKjs − KisKji

5. Fs = KiiFs − KjiFi

6. End of loop.

The reduced stiffness matrix then appears in the right bottom corner of the matrix.
When the interior degrees of freedom are eliminated, the multipoint constraints can

be applied to the remaining boundary nodes to eliminate the unwanted boundary degrees
of freedom. This results in a set of equations

qB
meso = Tqmacro, (4)

where, see Fig. 2,

qB
meso = {u11, v11, u5, v5, . . . u10, v10}

T, (5)

qmacro = {u11, v11, u12, v12, . . . u14, v14}
T, (6)

and T is the transformation matrix representing the way in which the excess boundary
degrees of freedom are slaved to the macroelement degrees of freedom. An example of
linear interpolation for face 11-14 appears in Fig. 3. In general, however, the master
nodes (macroelement boundary nodes) do not have to coincide with the boundary nodes
assumed for the mesoscopic finite element mesh. The final stiffness matrix for a given
macroelement is obtained by the multiplication of matrices

Kmacroelement = T
T

KreducT . (7)

In our particular case the excess boundary degrees of freedom are slaved to the master
degrees of freedom employing the Lagrangian interpolation. It means that individual
coefficients of the transformation matrix T are obtained as the value of the Lagrangian
interpolation function in a given position of the slave node. In particular, consider a one-
dimensional regular array of master nodes distributed over the boundary of a 2D domain.
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Figure 3: Example of linear interpolation of unwanted boundary nodes for MUC
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Figure 4: Lagrangian polynomial of the sixth order

Our goal is to find a system of polynomials, where every polynomial has the value 1 for
a corresponding master node (its position) and 0 for the others:

li(xj) = δij, (8)

where xj is the position of a master node and δij is the Kronecker delta; i.e., δij = 1 for
i = j and δij = 0 for i 6= j. This condition is fulfilled with the Lagrangian polynomial
written as

lj(x) =
(x − x0)(x − x1) . . . (x − xj−1)(x − xj+1) . . . (x − xn)

(xj − x0)(xj − x1) . . . (xj − xj−1)(xj − xj+1) . . . (xj − xn)
. (9)

An example of such polynomial for one of the six master nodes evenly spread over a given
edge of the respective macroelement is plotted in Fig. 4. These polynomials comply with
the requirement

∑

i

li(x) ≡ 1, (10)

and so every slave degree of freedom is fully interpolated by all master nodes. In the case
of two dimensional array of master nodes (assuming three dimensional mesoscale unit cell
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- MUC) the expansion is quite straightforward. In this case the Lagrangian polynomial
can be written as

lij(x, y) = li(x)lj(y), (11)

where li(x) and lj(y) are the Lagrangian polynomials for the x-axis and y-axis, respec-
tively. Such polynomial again fulfills both conditions (10) and (8).

It should be noted that if the internal degrees of freedom are also slaved to the
macroelement degrees of freedom (rather than statically condensed out), a single field
approximation is obtained. Finally note that it is not always efficient to order the de-
gree of freedoms such that the Gaussian elimination can be used for obtaining the reduced
stiffness matrix and the load vector, since such ordering might result in a large bandwidth.

An alternative approach relies on formal definition of the element stiffness matrix
coefficients K ij as

Kij = force at dof i due to unit displacement at dof j. (12)

Using this definition would simply require a solution of a series of problems in which one
degree of freedom is set equal to 1 while the remaining boundary degrees of freedom are
fixed. The resulting reaction forces then constitute one column of the reduced stiffness
matrix. This process is repeated for each boundary degree of freedom to obtain the entire
reduced stiffness matrix. The reduced load vector is obtained by solving one additional
problem in which all boundary degrees of freedom are constrained to zero and the internal
loads are applied. The negative of the boundary reaction forces then furnish the reduced
load vector contribution due to internal loads. Once the reduced set of equations is
obtained, the multipoint constraints can be imposed to eliminate the unwanted boundary
degrees of freedom. Other more efficient methods were developed to decrease the amount
of operations when reducing the stiffness matrix, see, e.g., (Woo and Whitcomb, 1994).

Henceforth, the procedure described above (i.e., static condensation combined with
application of multipoint constraints) will be termed “reducing structure”.

3 Coupled analysis

Recall the main objective of this contribution, i.e, the analysis of composite systems with
miner difference between individual scales, which makes the direct use of classical, usu-
ally uncoupled, homogenization techniques impossible. On the other hand, the use of
macroelement within the framework of coupled multiscale analysis is rather straightfor-
ward and certainly beneficial from the the solution accuracy point of view when compared
to uncoupled approaches. The essential steps governing the coupled multiscale analysis
based on macroelement formulation are reviewed in this section.

To make the numerical analysis as accurate as possible the macroscopic finite ele-
ment mesh is created while taking into account the main geometrical data needed for the
construction of the mesoscopic unit cell (the macroelement corner nodes coincide with
the vertexes of the mesoscopic unit cell). When material phases on mesoscale experi-
ence a nonlinear response, the standard Newton-Raphson method is called to solve the
linearized system of macroscopic equations. The macroelement instantaneous (tangent)
stiffness matrix and the vector of unbalanced forces follow from the analysis on mesoscale



3 COUPLED ANALYSIS 7

Figure 5: Coupled approach

proceeded by the “reducing structure” procedure. Note that the loading applied on meso-
scopic unit cell is provided through master nodes displacement field found from a single
macroscopic Newton-Raphson step. Thus for every iteration step the computed macro-
scopic displacements are transferred to the mesoscale and every macroelement is loaded
by these displacements. The reactions from mesoscale nonlinear analysis are transformed
back to macroscale and residual forces are computed. The generalized algorithm can be
written as, see also Fig. 5,

1. Create mesoscale mesh

2. Reduce this mesh (create macroelement) and compute its stiffness matrix

3. Create macro scale mesh from macro elements

4. Use standard Newton-Raphson analysis

5. For given iteration step i compute macroscale displacements

6. Transform these ”macro” displacements into ”meso” displacements

7. Load every macroelement by corresponding ”meso” displacements

8. Compute ”meso” reaction forces for every macroelement

9. Transform ”meso” reaction forces into ”macro” reaction forces

10. Compute residual forces on macromesh

11. If the error of residual forces is sufficiently small finish the analysis

12. Increase the iteration i = i + 1 and go to 5

Clearly, this approach is well suited for parallel computing, where one processor is
reserved for macroscale analysis and the remaining processors, if available, perform the
analysis on the level of mesoscopic unit cell.
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This method is very similar to ”brute” force approach but the possibility of paralleliza-
tion enhanced by the features of error estimation turning off/on the need for mesoscopic
analysis can significantly reduce the time needed to complete the analysis.

4 Numerical results

In this section the results of parametric studies using the technique mentioned in the
previous section will be summarized. The main goal is to examine an influence of the
number of the macroelement nodes on the accuracy of such an element. Four different
studies are carried out. The first two are concerned with a 2D model owing to its higher
simplicity and the remaining two deal with a 3D model.

Figure 6: 2D mesh of the mesoscopic unit cell

4.1 2D study

This particular analysis is focused on the influence of the number of boundary nodes be-
ing removed purely through static condensation (unlike when slaving them to the master
nodes via multipoint constrains). A hexagonal packing of carbon fibers embedded in the
epoxy matrix is used as a testing two-dimensional example. The macroelement employed
for reduced substructuring (highlighted in the center) and the mesh of this mesoscopic
unit cell are depicted in Fig. 6. The full mesh has 72 boundary nodes. Five macroele-
ments (i.e., elements with some nodes condensed out) with variable number of boundary
nodes are created. In particular, 72, 36, 18, 8 and 4 boundary nodes are preserved after
condensation. An example of an 8 node macroelement is plotted in Fig. 6. The selected
master (i.e., macro) nodes are represented by small circles. Fig. 7 shows a specific mesh
composed of macroelements with 8 nodes. This structure is loaded along one side by the
prescribed normal tractions such that the overall sum of the nodal forces remains constant
for every type of meshing. The opposite side is fixed. Comparison of average displacement
of the loaded nodes including the computational cost appears in Tab. 1 and Fig. 8. Note
that the result obtained from 72-nodes macroelement is the exact one (the same as if the
full ”meso mesh” is used to represent all elements in the entire structure). The results
indicate that reducing the number of the boundary nodes through static condensation
leads to a considerable error. Condensing out a half of boundary nodes gives approx-
imately 25% error in the displacement field even for a uniform loading. As expected,
the time consumption needed for solving the present problem substantially reduces with
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the number of nodes being condensed out, but at the expense of the solution error that
increases fairly rapidly. The boundary node reduction through static condensation thus
does not appear to be appropriate.

Figure 7: Numerical model from macro elements with 8 nodes

No. of macroelem. nodes Displacement Time Total number of nodes

72 0.0073 146.39 3861

36 0.0085 17.79 1881

18 0.0121 1.69 891

8 0.0244 0.17 341

4 0.0657 0.07 121

Table 1: Comparison of models using reduced substructuring

Next analysis is very similar to the previous one. Again the influence of the num-
ber of boundary nodes (i.e., nodes of macroelement), which will remain after “reducing
structure” step, is examined. The geometrical model of the reduced structure is shown
in Fig. 6. Again this model has 72 boundary nodes. Unlike the first study, only the inner
nodes of this model are condensed out. The excess boundary nodes are then reduced by
the multipoint constraints. In our particular case only the linear interpolation for slaving
the boundary degrees of freedom of mesoscopic unit cell to macroelement master nodes
(it can be imagine as the Lagrangian polynomial with only two lateral master nodes) was
used. Nevertheless, the quadratic interpolation was tested too, but the resulting stiff-
ness matrices derived for both linear and quadratic interpolation were fairly similar and
thus the quadratic interpolation was left out for further analysis. With reference to the
previous example, the same finite element mesh, Fig. 7, together with the same loading
conditions was assumed.
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Figure 8: Comparison of relative displacements

No. of macroelem. nodes Displacement Total number of nodes

72 0.00735 3861

36 0.00733 1881

18 0.00728 891

8 0.00710 341

4 0.00712 121

Table 2: Comparison of models using static condensation with linear interpolation con-
straints

The resulting average displacement of the loaded nodes for individual cases of the
degree of unwanted boundary dofs removal are stored in Tab. 2. Clearly, the results are
much more accurate in comparison with the previous example. The error for the 4-node
macroelement is only 3%. It means that the boundary degrees of freedom must not be
eliminated by static condensation but rather with the help of multipoint constraints.

4.2 3D study

To confirm individual conclusions drawn from two dimensional study a three dimensional
analysis is explored in this section. Two specific examples are addressed. First, an artificial
problem of plate consisting of a set of cubic mesoscopic unit cells is considered to examine
the influence of mesh density of a unit cell and the degree of boundary nodes reduction on
the solution accuracy. Second example is devoted to the application of proposed approach
to the macroscopic analysis of wound composite tube, where, owing to the complicated
geometry, the coupled multiscale analysis employing the macroelement formulation seems
to be the only option.

In view of the previous results the static condensation combined with multipoint con-
strains is used exclusively starting with the influence of mesh refinement on the level of
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Figure 9: Example of fine and coarse MUC mesh
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Figure 10: Loading of plate (in-plane loading and out-of-plane loading)

unit cell. To that end, consider a cubic mesoscopic unit cell of Fig. 9. Six meshes of
various degree of refinement were tested, see Fig. 9 for an example of coarse and fine
mesh. For each mesh the macroelement is derived by condensing out all inner degrees of
freedom and then introducing multipoint constrains to arrive at 8-node brick macroele-
ment (bilinear interpolation is used for tying the master and slave nodes). This element
is then used in macroscale analysis assuming plate of 10× 10 elements loaded by in-plane
and out-of-plane forces according to Fig. 10. The results represented by displacements
developed along the loaded edge appear in Tab. 3. Clearly, refining the finite element
mesh produces more compliant results. As expected, for in-plane loading the effect of
mesh refinement is rather inferior while for out-of-plane loading an error with respect to
the finest mesh is about 23%. These results are only qualitative as no “exact” solution is
available. Also note that for each unit cell the transversally isotropic material with the
plane of isotropy normal to the direction of in-plane loading was selected.

More interesting results follow from studying the effect of the boundary degrees of free-
dom reduction. A cubic mesoscopic unit cell with 11 nodes along each edge is assumed.
For the purpose of removing the unwanted boundary degrees of freedom several macroele-
ments with evenly distributed master nodes along individual edges were developed. Note
that their locations do not correspond to the original unit cell boundary nodes locations.
The Lagrangian polynomials are therefore used for interpolation. Elements with 2 to 12
master nodes along the edge were considered. The loading was limited to uniform in-plane
tractions only, i.e., the sum of all node loads was equal for every macroelement.

The results in terms of the axial displacements developed along the loaded edge are
plotted in Fig. 11. The number in figure legend represents the overall number of master
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Figure 11: Displacements along the loaded edge
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Figure 12: The error in displacements along the loaded edge
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Figure 13: Tensile displacements along the loaded edge assuming 12 master nodes per
edge of a cube
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mesh 1 2 3 4 5 6

No.of nodes 1515 199 68 42 20 13

in-plane l. ux [mm] 0.2067 0.2062 0.2056 0.2064 0.2029 0.2027

in-plane l. uz [mm] 0.0053 0.0054 0.0063 0.012 0.0052 0.0058

out-of-plane l. uz [mm] 57.25 54.96 51.09 48.53 45.7 44.4

Table 3: Results for in-plane and out-of-plane loading

simplified geometry
of fiber bundles

mesoscopic unit cell
z

x

y

longitudinal view
fiber bundle

Figure 14: MUC and longitudinal view of a section of real composite tube.

nodes along the edge. The exact solution is derived from the macroelement, where only
the inner nodes are condensed out. Fig. 12 shows the relative error computed as the L2

norm of a difference of the displacements along the loaded edge, Fig. 11, with respect
to the “exact” solution. Note that the accuracy of the results depends on the number
of master nodes more significantly than in 2D analysis. While for 3 nodes per edge the
error exceeds 0.001, for 10 nodes the error is only 7 × 10−6. It is interesting to note
that number of master nodes exceeding the number of boundary nodes of the original
unit cell provides rather oscillatory behavior as evident from Fig. 13 displaying oscillation
of the displacements for 12 master nodes along the macroelement edge. This can be
attributed to the fact that the size of the macroelement stiffness matrix is larger than the
matrix obtained just by condensing out all inner degrees of freedom. It means that some
additional degrees of freedom are added leading to an “unstable” structure.

The final example is devoted to the wound composite tube. The geometry of the
mesoscopic unit cell, its cross-section together with a real micrograph are shown in Fig. 14.
In this example, only a single macroelement resulting from the “structure reducing” step
applied to the mesoscopic unit cell of Fig. 14 is examined with respect to the effect
of removal of unwanted boundary degrees of freedom. As for the boundary conditions,
one side of the MUC was fixed while the opposite side was subjected to tensile uniform
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tractions. As in the previous examples the overall loading is kept constant for every
macroelement. Fig. 15 shows evolution of the tensile displacements along the upper
loaded edge of the unit cell of woven composite. The number in the legend stands again
for the number of master nodes placed along the edge of a given macroelement. Clearly,
the error for small number of master nodes is quite significant. For further evidence,
see Fig. 16. Note that for 5 nodes per edge the error is about 0.17 in L2 norm, while
for 28 nodes the error drops down to 0.005. In the latter case the number of nodes in
macroelement reduces to 1626 nodes compared to 2432 nodes for macroelement derived
from pure condensation (“exact solution”).
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Figure 15: Tensile displacements along the loaded upper edge of the MUC
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Figure 16: The error in displacements along the MUC edge

Unfortunately, the static condensation itself brings for the present unit cell only a
minor reduction in the overall number of degrees of freedom. This is attributed to the fact
that there are only two elements placed over the MUC thickness, thus the ratio between
the number of boundary nodes and the overall number of nodes of the mesoscopic unit
cell is quite small and so the reduction of this structure is not so efficient. Finally, as in
the case cubic unit cell, if the number of master nodes in some direction is higher then
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the real number of boundary nodes the displacements start to oscillate and the results
are meaningless.

5 Conclusion

The formulation of macroelement based on the static condensation is described in the
paper. This method begins with the formulation of mesoscopic global stiffness matrix
followed by static condensation of inner degrees of freedom from the mesoscopic finite
element mesh. Finally, a set of constraints is applied to eliminate the unwanted boundary
degrees of freedom (slaving the selected set of boundary degrees of freedom of a MUC
to master nodes of a given macroelement). This procedure results into a macroelement
having a representative structural stiffness matrix, which can be directly used in the
macroscale analysis. The advantage of this method is that there is direct coupling between
meso and macroscale through macroelements. The results show that static condensation
applied also to boundary degrees of freedom leads to erroneous results. Therefore, the
proper procedure of eliminating the unwanted boundary degrees of freedom corresponds
to the application of multipoint constraints. Application of “structure reducing” step to
rather flat MUC such the wound composite tube is not very beneficial since the resulting
macroelement, in order to have a tolerable accuracy, must contain a significant number
of nodes so that its use on the macro level is not that efficient. Nevertheless, in case
of ”reasonable” mesoscopic unit cells the reduction of the number of nodes (degrees of
freedom) is quite high and so it allows for substantial savings in the computational time.

Acknowledgments
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Šejnoha, M. (1999). Micromechanical analysis of unidirectional fibrous composite plies

and laminates, volume 3 of CTU Reports. Czech Technical University in Prague.

Whitcomb, J., Woo, K. S., and Gundapaneni, S. (1994). Macro finite-element for analysis
of textile composites. Journal of Composite Materials, 28(7):607–618.

Wierer, M. (2005). Multi scale analysis of woven composites. PhD thesis, Faculty of Civil
Engineering, Czech Technical University in Prague.

Woo, K. and Whitcomb, J. (1992). Macro finite element using subdomain integration. In
OTRC Report, Texas, A&M University.

Woo, K. and Whitcomb, J. (1994). Enhanced direct stiffness method for finite element
analysis of textile composites. Composite structures, 28:385–390.

Zeman, J. (2003). Analysis of Composite Materials with Random Microstructure. PhD
thesis, Czech Technical University, Prague.

Keywords: Macroelement, multiscale modeling, static condensation, multipoint con-
straints, mesoscopic unit cell (MUC)



LIST OF TABLES 17

List of Figures

1 Wound composite tube on macroscale and mesoscopic unit cell . . . . . . . 3
2 Example of finite element mesh for mesoscopic unit cell . . . . . . . . . . . 4
3 Example of linear interpolation of unwanted boundary nodes for MUC . . 5
4 Lagrangian polynomial of the sixth order . . . . . . . . . . . . . . . . . . . 5
5 Coupled approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6 2D mesh of the mesoscopic unit cell . . . . . . . . . . . . . . . . . . . . . . 8
7 Numerical model from macro elements with 8 nodes . . . . . . . . . . . . . 9
8 Comparison of relative displacements . . . . . . . . . . . . . . . . . . . . . 10
9 Example of fine and coarse MUC mesh . . . . . . . . . . . . . . . . . . . . 11
10 Loading of plate (in-plane loading and out-of-plane loading) . . . . . . . . 11
11 Displacements along the loaded edge . . . . . . . . . . . . . . . . . . . . . 12
12 The error in displacements along the loaded edge . . . . . . . . . . . . . . 12
13 Tensile displacements along the loaded edge assuming 12 master nodes per edge of a cube 12
14 MUC and longitudinal view of a section of real composite tube. . . . . . . 13
15 Tensile displacements along the loaded upper edge of the MUC . . . . . . . 14
16 The error in displacements along the MUC edge . . . . . . . . . . . . . . . 14

List of Tables

1 Comparison of models using reduced substructuring . . . . . . . . . . . . . 9
2 Comparison of models using static condensation with linear interpolation constraints 10
3 Results for in-plane and out-of-plane loading . . . . . . . . . . . . . . . . . 13


	Introduction
	Theoretical background
	Coupled analysis
	Numerical results
	2D study
	3D study

	Conclusion

