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Nomenclature 
 

ρ  Intensity 

α  Number of realization 

χm  Matrix characteristic function 

χh  Reinforcement characteristic function 

cm  Local volume fraction of the matrix phase 
ch  Local volume fraction of the reinforce phase 

Sr(x)  One point probability function 
Srs(x,y)  Two point probability function 

L  Length of macrostructure 

l  Length of microstructure 

EX(f(x)) Expected value of a function f at a point x 

Em  Modulus of elasticity of the matrix phase  

Eh  Modulus of elasticity of the reinforce phase 

S  Set of all possible samples 

P(x,α)  Probability of α in s 
v(x)  Test function 

τ(x,α)  Polarization stress 

Γh(x,α)  Discretized value of strain Green’s function 

τr(x)  Deterministic value of polarization stress for phase r 

N(x)  Basis function 

B(x)  Strain-displacement transformation matrix 

ru  Nodal displacement 

rτ  Value of polarization stress τ at integration points 
K  Stiffness matrix 

R  Vector of nodal loading 

ξ  Integration points 

h  Length of finite element 

n  Number of finite elements 

H  Heaviside step function 

δ(x)  Dirac delta function 

δrs  Kronecker’s delta 
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1 ABSTRACT 

Functionally graded materials (FGMs) include a dual-phase graded layer in which two different 

constituents are mixed continuously and functionally according to a given volume fraction. For 

the analysis of their thermo-mechanical response, conventional overall (average, global or 

homogenized) methods have been widely employed in order to estimate equivalent material 

properties of the graded layer. However, such overall estimations are insufficient to accurately 

predict the local behavior.  

 

In this project, a numerical procedure based on discretized Hashin-Shtrikman variational 

principles is introduced as an alternative to traditional approaches. After a brief review of state-

of-the art in the field of FMGs, we study a stochastic microstructural model for these materials in 

one dimension together with an appropriate boundary value problem to be solved. Next, the 

Hashin-Shtrikman variational principles are reviewed and applied to these material systems. The 

finite element and the boundary element method are used to discretize the resulting stationarity 

conditions. Finally, a number of numerical examples are presented to illustrate performance of 

these methods and show differences between the response of FGMs and composites with a 

uniform microstructure. 

2 INTRODUCTION 

Many components are subjected to mechanical, thermal or chemical loads that are                                 

unevenly distributed across their section. Gradient materials offer the possibility to combine two 

materials properties avoiding most of the disadvantages of a bimaterial. In contrast, traditional 

composites are homogeneous mixtures, and they therefore involve a compromise between the 

desirable properties of the component materials. Since significant proportions of an FGM contain 

the pure form of each component, the need for compromise is eliminated. The properties of both 

components can be fully utilized. For example, the toughness of a metal can be mated with the 

refractoriness of a ceramic, without any compromise in the toughness of the metal side or the 

refractoriness of the ceramic side. Consider for example a turbine blade which must withstand 

high non-stationary heat fluxes and centrifugal accelerations. An ideal structure for this 

application would consist of a tough metal core and a heat and corrosion resistant ceramic at the 

hot surface of the blade. If the ceramic is directly bonded to the metal, spilling may occur during 

thermal cycling as very high thermal stresses occur at the interface. A gradient material that has a 

smooth transition from the ceramic surface to the metal core can avoid the thermomechanical 

stress concentration at the interface. 

 

The main feature of a gradient material is that its properties changes gradually with position. 

Used as coatings and interfacial zones, they help to reduce mechanically and thermally induced 

stresses caused by the material property mismatch and to improve the bonding strength.  
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From the beginning of introduction of FGMs (Functionally graded materials), conventional 

homogenization approaches such as the rules of mixtures, the mean-field micromechanics 

models, the unit cell model and so on for usual dual-phase composites have been employed. 

Even though these models provide reasonable overall prediction of thermo-mechanical behavior, 

these may fail to describe the reliable local behavior owing to the assumptions involved in them. 

In reality, the material properties of phase composites are function of shape and size, orientation 

and dispersion structure of constituent and the loading and the boundary conditions. Therefore, 

in order to predict the reliable local behavior of FGMs, one needs sort of discrete (or local) 

material property estimation techniques.  

  

However, most of the “extreme environment” applications for FGMs require bulk FGMs, i.e., 

FGMs with gradient breadth in the order of millimeters to centimeters, and with continuous 

gradient profiles. Bulk FGMs remain merely a hypothesis. No commercially viable process has 

yet been developed to make such a material. While the scientific literature abounds in papers on 

the modeling of the hypothetical properties of bulk FGMs, the few proposed fabrication methods 

are labor-intensive specialized laboratory techniques, not low-cost commercial processes. 

 

2.1 PRODUCTION TECHNIQUES 

Due to intensive research efforts during the last ten years, a large spectrum of processing 

methods is available today. Only a few widespread methods that are applicable to a variety of 

material combinations shall be presented here. 

 

Two classes of methods can be distinguished according to the way in which the gradient is 

created: In constructive processes the gradient is built up layer by layer from the constituents. A 

second class of routes relies on transport processes to build up the gradient. The transport 

processes may either soften the border between two phases or inversely a homogenous precursor 

material is graded in an external field, e.g. a temperature or electric field. 

2.1.1  Routes based on conventional techniques 

2.1.1.1  Powder metallurgy processing 

FGM’s can be produced by traditional powder processing routes if an additional step is 

introduced before consolidation. The gradation methods can be divided into dry and wet 

processes, where the powders are dispersed in a liquid medium. 

 

Powder metallurgy offers more advantages by means of the lower costs, higher raw materials 

availability, simpler processing equipment, lower energy consumption and shorter processing 
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times. In a global sense the higher advantages in powder metallurgy, materials can be numbered 

as higher composition uniformity leading to segregation absence and a finer and more uniform 

distribution in the second phases as precipitates and carbides. It is especially important when the 

material is constituted by two or more bonded phases, matrix and reinforcement, trying to 

combine the most interesting properties of each one of them, in a composite material. Powder 

metallurgy offers the advantage, in front of other conventional techniques, of the possibility to 

obtain a composite material with higher content of reinforcement. Besides, another advantage of 

powder metallurgy is the possibility of changing the composition as a function of the 

requirements and with the aim of a FGM obtaining. 

 

Dry processing. Powder compacts are usually prepared by stacking dry powders. The basic 

technique consists of appropriate composition and simply stacking one layer on top of the other. 

Dry stacking techniques will usually produce discrete layers with a minimum thickness of 

about 0.2 mm. 

 

Multilayer techniques have serious constraints: they produce stepped gradients, and being batch 

processes, they are not suitable for mass production. Thus, there have been developed a 

continuous process, in which synchronized distributor places the different powders on a 

conveyor belt. Another process that produces stepless gradient is centrifugal powder metallurgy, 

where a powder of continuously varying composition is transferred onto a rotating plate, from 

where it is projected to the rotating wall of centrifuge. The process can be modified by mixing 

different amounts of filler materials instead of changing the powder composition. This enables 

production of porosity gradients.  

 

 Wet processing. Conventional powder processing is frequently modified by employing powder 

suspensions instead of the powders themselves. Aqueous suspensions of powders are sprayed 

from separate guns and drying takes place during the spraying process. This allows a very fine 

adjustment of the gradient as very thin layers maybe stacked. 

 

A widespread technique for ceramic/ceramic gradient material is sequential slip casting where 

slips of different composition are cast on top of the other. However, the production of metal-

ceramic FGM’s with this method is difficult, as very different powder particles sizes have to be 

used in order to adjust sintering rates. This leads to complications because high permeability 

differences inside the green body cause fracture during process. The key to successful fabrication 

of multiplayer metal-ceramic green bodies like in avoiding large differences in permeability and 

pore sizes between neighboring layers. Instead of slip casting, electrophoretic deposition from 

slurries of changing composition may be used to produce a graded green body. 

 

It is also possible to produce smooth, stepless gradients by slip casting or pressure infiltration. 
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Transport processes like sedimentation or electrophoresis also allow production of continuously 

graded powder compacts. FGM’s may also be produced from powders dispersed in the gas 

phase. For example, by continuously changing the precursor material in a mist pyrolysis process, 

a powder compact with a smooth gradient is retained after depositing the aerosol onto a filter. 

 

Consolidation techniques. The main drawbacks of powder technology in FGM production, 

apart from processing costs, are the difficulties in consolidating the powder mixtures. One 

requirement for the successful consolidation of a dense graded powder compact is an equality 

between the initial packing density of the different powder mixtures, otherwise uneven shrinkage 

will lead to deformation of compact during sintering. A similarity of the sintering kinetics of the 

different composition is also required at all temperatures; otherwise the compact will warp and 

crack during sintering. For metal-ceramic FGM’s the second requirement is usually not met and 

special techniques for the successful production of dense FGM’s have to be developed. 

2.1.1.2 Thermal Spray Techniques 

Thermal spray techniques are very attractive methods of production of FGM coatings as they are 

suitable for metals and refractory materials. Thermal spray is a generic term for a group of 

coating processes used to apply metallic or nonmetallic coatings. These processes are grouped 

into three major categories: flame spray, electric arc spray, and plasma arc spray. These energy 

sources are used to heat the coating material (in powder, wire, or rod form) to a molten or 

semimolten state. The resultant heated particles are accelerated and propelled toward a prepared 

surface by either process gases or atomization jets. Upon impact, a bond forms with the surface, 

with subsequent particles causing thickness buildup and forming a lamellar structure. 

 

 
Figure 1 Thermal spray process 
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2.1.1.3 Coating Techniques 

A number of existing coating techniques can be modified in such a way that a gradation is 

introduces by changing the composition of the precursor material. The most important class of 

deposition processes uses vaporized precursor materials. These vapor deposition techniques 

allow for production of thin coatings only, typically in the range of micrometer. The gradient is 

produced by proper amount of precursors of a reactive gas such as oxygen or nitrogen in the 

deposition chamber. However, the relationship between composition of the gas phase and the 

produced films is not always simple. The design of gradients by these processes may thus be a 

tedious procedure and requires investigation of film growth and composition for different gas 

phase compositions.   

2.1.1.4 Other methods 

Thin-sheet lamination is a very attractive method to produce step-like gradient, because of its 

low cost and suitability for mass production. Step-graded ceramic coating can also be produced 

by repeatedly dipping a substrate into slurries of varying composition and drying. Stacking of 

2D-fabrics with powder coating of different thickness or composition and subsequent hot 

pressing will result in a functionally graded fiber composites. 

 

Diffusion bonding is a simple and cost effective gradation method for the case that the gradation 

profile is not very important and only a thin graded layer is required. 

2.1.2  Non-conventional Methods 

There is a number of manufacturing routes for FGM’s that are not directly derived from 

conventional techniques. In general these methods are not as good as the conventional methods, 

but some of them deserve attention as they have particular advantages, like low-cost or the 

possibility to produce particular microstructures. 

 

One of these methods is infiltration techniques, which are suitable methods for material 

combination with very different melting points.  

 

For the production of purely metallic FGM’s, thermomechanical processes can be used. 

Recently, much interest has been raised in developing new processing techniques, which can be 

used to produce continuously graded composition. Centrifugal casting, continuous casting, 

infiltration, co-sedimentation, etc. are newly developed methods. Of these methods, co-

sedimentation is special due to its simple operation, low consumption, and the characteristics 

suitable for most FGM systems. 

 

To conclude, there are a lot of production methods for FGM’s, each having its advantages. 

Which of these methods is suitable depends on the material system, the kind of gradation needed 
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and the required microstructure and density of the product.  

2.2 ANALYSIS MODELS OF FGM MATERIALS 

The main advantage of a gradient in a material is that it offers the possibility to optimize a 

particular property of a material while maintaining other properties within acceptable limits. In 

order to maximize the use of the FGM concept it is necessary to determine the optimum 

composition profile by appropriate modeling studies as the large number of possible gradation 

renders an experimental study impracticable. 

 

The estimation of material properties for phase composites can be classified into theoretical and 

experimental categories. The theoretical approaches are split into microscopic and overall 

studies. The prediction methods of overall material properties are generally classified into three 

groups: (a) direct, (b) variational and (c) approximation approaches. 

The direct method seeks closed-form analytic solution; therefore a precise mathematical 

treatment becomes troublesome. On the other hand, the variational method such as Hashin 

Shtrikman’s bounds does not specify the details in the phase geometry but rather provide the 

upper and lower bounds for the overall properties. 

 

In the approximation approach, the self-consistent model by Hill and the others, the mean field 

micro-mechanics models by Mori and Tanaka and Wakashima and Tsukamoto, The linear and 

modified rules of mixtures by Tamura and the unit cell model by Ravichandran are widely-

employed overall estimates [11]. These overall models are simple and convenient to predict the 

overall thermo-mechanical response and material properties. 

2.3 FEM/BEM Comparison 

1. FEM: An entire domain mesh is required. 

 BEM: A mesh of the boundary only is required. 

Comment: Because of the reduction in size of the mesh, one often hears of people saying 

that the problem size has been reduced by one dimension. This is one of the major pluses 

of the BEM - construction of meshes for complicated objects, particularly in 3D, is a very 

time consuming exercise. 

2. FEM: Entire domain solution is calculated as part of the solution. 

BEM: Solution on the boundary is calculated first, and then the solutions at domain 

points (if required) are found as a separate step. 

Comment: There are many problems where the details of interest occur on the boundary, 

or are localized to a particular part of the domain, and hence an entire domain solution is 

not required. 

3. FEM: Differential Equation is being approximated. 



 10 

BEM: Only boundary conditions are being approximated. 

Comment: The use of the Green-Gauss theorem and a fundamental solution in the 

formulation means that the BEM involves no approximations of the differential Equation 

in the domain - only in its approximations of the boundary conditions. 

4. FEM: Sparse symmetric matrix generated. 

BEM: Fully populated non-symmetric matrices generated. 

Comment: The matrices are generally of different sizes due to the differences in size of 

the domain mesh compared to the surface mesh. There are problems where either method 

can give rise to the smaller system and quickest solution - it depends partly on the volume 

to surface ratio. For problems involving infinite or semi-infinite domains, BEM is to be 

favoured. 

5. FEM: Element integrals easy to evaluate. 

 BEM: Integrals are more difficult to evaluate, and some contain integrands that 

 become singular. 

 Comment: BEM integrals are far harder to evaluate. Also the integrals that are the most 

difficult (those containing singular integrands) have a significant effect on the accuracy 

of the solution, so these integrals need to be evaluated accurately. 

6. FEM: Widely applicable. Handles nonlinear problems well. 

 BEM: Cannot even handle all linear problems. 

Comment: A fundamental solution must be found (or at least an approximate one) before 

the BEM can be applied. There are many linear problems (e.g., virtually any non-

homogeneous equation) for which fundamental solutions are not known. There are 

certain areas in which the BEM is clearly superior, but it can be rather restrictive in its 

applicability. 

7. FEM: Relatively easy to implement. 

 BEM: Much more difficult to implement. 

Comment: The need to evaluate integrals involving singular integrands makes the BEM 

at least an order of magnitude more difficult to implement than a corresponding finite 

element procedure. 

In this paper we will study the modeling of FGM material first by Monte-Carlo simulation 

method and compare the result with Hashin Shtrikman’s variational method. This text is 

followed by a computer program which studies the material properties achieved by these two 

methods. For full review of the programs, see appendices. 

3 Analytical modeling of FMGs 

In the field of material science, there have been many studies of functionally graded materials. 

Recall that FGMs are made of continuously gradient heterogeneous materials, and offer desired 

functions which are adaptive to the environmental situations. In the conventional modeling of 

FGMs, the rule of mixture has been most frequently used.  
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Real world functionally graded materials, such as biological cellular materials, however, exhibit 

very complex microstructures. Therefore they may exhibit many interesting and important 

macroscopic functions such as foam materials with negative Poisson’s ratio, or human bone, 

possessing layered microstructure architecture. Obviously, the macroscopic properties of these 

cellular materials cannot be accurately described by the rule of mixtures. Hence, a more general 

model is needed. 

 

The model introduced in the current work systematically builds on a realistic description of 

graded composite geometry, see Section 3.1. Due to the random nature of the problem, the 

adopted description is based on the theory of non-uniform Possion processes. After the statistical 

characterization of the model, the mechanical problem to be solved is introduced in Section 3.2. 

Finally, the analytical expression for mean values of selected quantities of interest is presented in 

Section 3.3 to provide a basis for assessment of performance of numerical approximation 

methods in Chapters 4–7 where the structure is solved by FEM and BEM and a comparison is 

being made. 

3.1 Microstructural model 

3.1.1 Basic parameters 

Equation Chapter 3 Section 3The microstructural model adopted in this work is basically a one-

dimensional variant of the geometrical model proposed by Quintanilla and Torquato [1]. The 

schematic illustration of the model is shown in Figure 2. The macroscopic structure is 

understood as a rod of length L with reinforcements of length l distributed within the structure. It 

is tacitly assumed that l << L, so that a direct simulation (especially for more dimensional cases) 

would be practically intractable. The position of individual reinforcements follows from 
coordinates of reference points x1, x2,…, xN randomly generated in the interval 0;L .   

 

 
Figure 2 Scheme of the structure 

 

To allow for microstructure gradation, the distribution of the reference points is specified using 

position-dependent intensity ρ(x) giving the expected number of reference points dn(x) found in 
an infinitesimal segment dx around a point x  
 ( )d ( ) dn x x xρ=  (3.1) 

Therefore, the expected number of reference points found in a finite-size interval I ⊆ L,0  is 
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determined by  

 
( )( ) d .

I

n I x xρ= ∫
 (3.2) 

Eq. (3.2) readily provides the number of reference points in the whole structure N 

 
( ) ( )

0

0, d ,
L

N n L x xρ
 

 = =   
 
∫

 (3.3) 

where n denotes the integer part of a variable n. Note that form a statistically uniform 

composites, the intensity ρ(x) = ρ = const and Eq.(3.2) reduces to 
 ( ) ,n I Iρ=  (3.4) 

where Idenotes the length of an interval I. 

3.1.2 Statistical model 

3.1.2.1 Basic relations  

To provide a general framework for the description of the introduced microstructural model, we 

firstly introduce a concept of a sample space S (often denoted as an ensemble in statistical 

physics literature), denoting in our context the set of all possible microstructural configurations. 

Further, we label individual samples as α∈S. Then, the expected value (or ensemble average) 

EX(f(x)) of a random function f(x;α) is defined as 

 ( )( ) ( ) ( ), ,
S

EX f x f x p dα α α= ∫  (3.5) 

where p(α) denotes the probability density of α in S.  

 

Note that when a direct simulation method is used to estimate the expected value EX(f(x)), 

α∈{1,2,3,…,|S|} (with |S| denoting the number of samples), each sample α has equal probability 

p(α)=1/|S| and the expected value is provided by 

( )( ) ( )∑
=

=
S

xf
S

xf
1

,
1

EX
α

α .     (3.6) 

Since the proposed model incorporates only binary (two-phase) heterogeneous materials, 

specification of the material distribution can be formally provided by the matrix characteristic 

function χm: 

 χm(x,α) =1 � x is in the matrix phase for the sample α.   (3.7) 

Complementary, we can define the heterogeneity characteristic function χh as  

χh(x,α) =1 � x is in the reinforcing phase for the sample α. (3.8) 

Clearly, characteristic functions for individual phases are not independent as  

 ( ) ( ), , 1m hx xχ α χ α+ =
. (3.9) 
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3.1.2.2 Local volume fractions  

The basic statistical description of the considered material system is provided by the expected 

value of the matrix characteristic function. It follows from relations (3.7) and (3.9) that the 

expected value coincides with the probability, that a point x will be located in the matrix phase; 

in other words with the probability that the interval I(x), defined as
 

 ( ) 0, ,I x L x l x= ∩ −
 (3.10) 

will not be occupied by any reference point. Recognizing that the distribution of individual 

reference points can be mathematically described as a non-uniform Poisson process, this 

probability can be determined as [2] 

 
( )

( ) exp( ( ) ).m
I x

c x t dtρ= −∫  (3.11) 

In the following text, we will denote this quantity as a local volume fraction of the matrix phase 

and denote is as cm(x). It should be emphasized, however, that this term was selected only for 

notational convenience; it has nothing to do with volume average of the matrix characteristic 

function as in the case of unbounded statistically homogeneous composites [9]. Finally, it 

directly follows from Eq. (3.9) that the local volume fraction function for the reinforcement 

phase ch(x) is given by the relation 

 ( ) ( )( ) ( )EX 1 .
h m m
c x x c xχ= = −  (3.12) 

3.1.2.3 Two-point probability functions 

The previously introduced concept of a local volume fraction can be immediately used for 

simple averaging-based procedures such as rules of mixture. Nevertheless, when using more 

sophisticated approaches, more information on the microstructure is needed. Such a data can be 

provided by two-point probability functions, which give the probability, that given points x and y 

will be occupied by a prescribed phase. For example, the matrix-matrix probability function is 

follows from  
 ( ) ( ) ( )( ), EX .mm m mS x y x yχ χ=  (3.13) 

Using similar reasoning as for the case of local volume fractions, this relation coincides with the 

probability, that interval I2(x,y) given by 
 ( )2 , ( ) ( )I x y I x I y= ∪  (3.14) 

will not be occupied by any reference point. Hence, the matrix-matrix probability function 

follows from 

 
( ) ( )

( , ) exp( ( ) ).mm
I x I y

S x y t dtρ= −∫ ∪
 (3.15) 

 Note due to relation (3.9), we can simply determine the remaining two-point probability 

functions (Smh, Shm, Shh) once the Smm is known: 

 

( ) ( )

( )

, ( , ),

( , ) ( ) ( , ),

( , ) 1 ( ) ( , ).

hm m mm

mh m mm

hh m m mm

S x y c y S x y

S x y c x S x y

S x y c y c x S x y

= −

= −

= − − +
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3.1.3 Examples 

To illustrate the theoretical results derived in this section, we select a simple model of a 

functionally graded material with a piecewise-linear distribution of intensity ρ. The particular 
form is motivated by a example of microstructure shown in Figure 3. 

 

 
Figure 3 Example of a functionally graded material [3] 

 

In this case, the parameterization of intensity profile is given by relations 

 ( ) ( )
0 ,

,

.

a

a

b

x a

x k x a a x b

b x L

ρ

ρ
ρ ρ

ρ

≤ <
= + − ≤ <
 ≤ ≤

 (3.16) 

This form was selected mainly for the analytical convenience, considering e.g. piecewise 

constant distribution is clearly possible in this setting without any problems. Furthermore, by 

selecting ρa=ρb we immediately recover the case of statistically homogeneous composite. The 
first geometrical quantity is the expected number of reference points in the whole structure. It 

directly follows from relation (3.3): 

 

 ( ) ( )( )1
2 .

2 a bN a b L a bρ ρ = + + − −  
 (3.17) 

The expression for the local matrix volume fraction is a little bit more involved; after some 

elementary, but rather tedious, manipulation we obtain 
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 ( )

( )
( )

( )

( )( )

( )

( )

2

2

exp 0 ,

exp ,

exp ,
2

exp 2 ,
2

exp ,
2

exp .

a

a

a

m

a

b

b

x x l

l l x a

k
l x a a x a l

kc x
l l x a l a l x b

k
l x b l b x b l

l b l x L

ρ

ρ

ρ

ρ
ρ

ρ

ρ

ρ

ρ

 − ≤ ≤
 − < ≤
  
 − − − < ≤ + 
  
=   − − − − + < ≤ 

 
  

− + − − < ≤ +  
 

 − + < ≤

 (3.18) 

 

The character of the local volume fraction is illustrated on Figure 3(a)—(f). Geometrical 

parameters of the model are set to L=1m, a=0.25m and b=0.25m. The selected profiles of 

intensity are shown in Figure 3 (a) for l=0.01m and for l=0.05m in Figure 3(b). In both cases, the 

quantities ρa and ρb were selected in such a way, that local volume fractions equal to 20% and 
80% in the non-graded parts of the structure. The resulting local volume fractions are shown in 

Figure 3(c)—(d), while Figure 3(e)—(f) show corresponding profiles for statistically 

homogeneous composites with intensity defined in such a way that number of reference points is 

equal to the non-homogeneous case. 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

Figure 4 (a,b) Profiles of intensity for l=0.01 and 0.05m, (c,d) Local volume fractions 

for a statistically non-uniform composite, (e,f) Local volume fractions for a statistically uniform 

composite 

  

The resulting dependencies nicely illustrate the basic features of functionally-graded materials 

which are not present in traditional homogenization of statistically homogeneous composites. 

First, the size effects demonstrated by different profiles of local volume fraction for different 

sizes of reinforcements; compare Figure 3(c,e) with Figure 3(d,f). Second, the boundary layer in 

the interval 〈0,l). Although this phenomenon is present for both statistically uniform and non-

uniform case, in a traditional analysis of composite materials it is usually neglected. For the 

functionally graded materials, however, this effect should be taken into account as it is 

comparable to microstructure gradation inside the heterogeneous body. 

 

The two-point probability functions for a given microstructural model are summarized in Figure 

5. Clearly, it contains substantially more information when compared to the two-point 

probability function. Note again the typical boundary layer present in the current microstructural 

model.  

 
 

(a) (b) 
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(c) (d) 

 

 
(e) (f) 

 

 
(g) (h) 

 

Figure 5 Examples of two-point probability functions, (a)—(d) statistically uniform 

composite, (e)—(h) statistically non-uniform composite 
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3.2 Setting of the mechanical problem 

The particular structure studied is this section is shown in Figure 6. 

 
Figure 6 Setting of the mechanical problem 

The stochastic boundary value problem (BVP) to be solved has the following form 

 
( ; )

( ; ) ( )
d du x

E x f x
dx dx

α
α − = 

 
 (3.19) 

with boundary conditions 

 
(0) 0,

( ; )
( ; ) ,

u

du L
E L F

dx

α
α

=

=
 

where α denotes the given realization of microstructure and remaining symbols follow from 
Figure 6. To keep the presentation simple, we concentrate on the determination of expected 

value of the displacement at a point x  

 ( )( ) ( ) ( )EX ; ,
S

u x u x p dα α α= ∫  (3.20) 

where u(x;α) is a solution to the problem (3.19). Due to one-dimensional nature of the problem, 
we are able to determine this value analytically.  In particular, we know that the normal force N 

is a deterministic value due to one-dimensional equilibrium conditions. Hence, for a given 

realization α, the displacement field u can be easily obtained as  

 
0

( )
( ; ) .

( ; )

x
N t

u x dt
E t

α
α

= ∫  (3.21) 

Inserting Eq. (3.21) into averaging relation (3.20), we immediately see that 

 
0

1
EX( ( )) ( )EX

( )

x

u x N t dt
E t

 
=  

 
∫ , (3.22) 

where the expected value is provided by 

 
( )
1 ( ) ( ) 1 1 1

EX ( )m h
m

m h h m h

c t c t
c t

E t E E E E E

   
= + = + −   

  
 (3.23) 

with local volume fractions given by Eqs. (3.11) and (3.12)..  Observe that, as typical for one-

dimensional statically determinate, the actual result depends only on the local volume fractions. 

This is rather an exception, considering a slightly more complex problem (e.g. statically 

indeterminate) would lead to more complex dependencies.  
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3.3 Numerical examples 

To verify the introduced formulas and to illustrate problems encountered when dealing with 

random composites, we compute response of the material using a simple Monte-Carlo simulation 

technique. To this end, the microstructure is randomly generated using the algorithm described in 

Section 10.1, see also [1] for more details. Then, for every realization α, the displacement u(x;α) 
is determined by a direct integrations, see Eq. (3.21). Averaging these distributions according to 

Eq. (3.6) yields, as the number of samples goes to infinity, the theoretical value (3.22). In the 

following, we illustrate two results – one related to a variable ρ(x) and one to a constant value. 
Further details about the algorithm used can be found in Section 10.1.   

 
 

(a) (b) 

 

 
(c) (d) 

Figure 7 Direct simulation method, (a) Expected value of modulus of elasticity 

EX(E(x)) for a statistically homogeneous material, (b) Expected value EX(u(x)) for F=0N, f =1 

Nm-1, (c) Expected value of modulus of elasticity EX(E(x)) for a statistically non-homogeneous 

material, (b) Expected value EX(u(x)) for F=0N, f =1 Nm-1. In all examples Em= 2Pa, Eh=20 Pa, 

L=2m, l=0.05m, 
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3.4 Conclusions 

As it is seen from the graphs in Figure 7, the analytical solution is converging to the theoretical 

solution (Exact solution). According to the results for u(x),it is seen that a large number of 

realizations is not necessary to get a good result, although it takes time for the program to 

calculate the results. So it could be concluded that the Monte-Carlo approximation can be used 

and it gives a good approximation but it is time consuming, which is not very convenient. This is 

particularly visible for the approximation of EX(E(x)), which is rather poor even for a large 

number of realizations. The quality of numerical data is especially bad in the region of the 

boundary layer, which is perhaps of the most interest from the applications point of view. 

This problem can be circumvented using proper numerical methods (FEM, BEM), since there is 

no need for number of realizations. Both of these methods are for the discretization of the 

Hashin-Shtrikman variational principles, which as summarized below. 

 

4 Numerical modeling of FMGs using Hashin-Shtrikman 

variational principles 

        In their recent works, Luciano and Willis [2] and Procházka a Šejnoha [10] developed an 

approach, based on a stochastic variational principle. It generated an integral equation, whose 

kernel was related to a Green’s function defined for the body in question. Such a Green’s 

function can only be found explicitly for simple geometries, hence a proper numerical treatment 

is needed. The formulation leads directly to equations that provide representations for the stress 

and strain fields in any realization of the medium, from which any statistical average or local 

quantities can be computed. Explicit approximation is performed within a realization of Hashin–

Shtrikman type for the stochastic variational structure.  

 

In this Section, we basically follow the route set by Luciano and Willis, but we for a moment do 

not stick to any particular numerical method but rather provide a general framework for analysis 

composites on bounded domain. To allow the analysis for different geometries, the unknowns in 

Hashin-Shtriman VP can be computed from FEM or BEM, which both of them are explained in 

more detail in Chapters 5 and 6.  

4.1 Classical variational principles 

First we recall the classical variational principles (VPs). Assume a simply supported beam with 

distributed normal loading f(x) and applied force F at the end of the beam with variable and 

random modulus of elasticity E(x;α) as in Figure 5. 
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Figure 8 Example 

The classical Lagrange variational principle suggest that from all the kinematically admissible 

states of the examined elastic body, the right is the one which gives the minimum value to the 

total potential (or complementary) energy: 

 minW LΠ = + →  (3.24) 

where W is internal energy, while L is the external energy (potential energy of external forces). 

For this example we get: 

 

2

0

1
( ; ) ( ; ) ( ( )) ( ) ( ) ( )

2

L

v E x v x f x v x dx Fv Lα α ε Π = − − 
 ∫

 (3.25) 
The minimization of Π(v,α) is performed on trial function which satisfy .0)0( =v  The minimizer 

u(x;α) of (3.25) satisfies the Euler equation 

 { }
0

( ( ; ); ) ( ( )) ( ; ) ( ( ; )) ( ) ( ) 0,
L

u x v x E x u x f x v x dxδ α α ε δ α ε α δΠ = − =∫  (3.26) 

which must hold for all test functions δv verifying .0)0( =vδ  This yields to the already 

introduced stochastic ODE, see (3.19), 

 ( ) ( )( ) ( ); ; ; 0.
d

E x x f x
dx

α ε α α+ =  (3.27) 

Owing to the fact we study the problem with random coefficients, we introduce the stochastic 

variational principle: 

 
min  ( ( )) min  ( ; ) ( )

s

EX v v p dα α αΠ = Π∫
 (3.28) 

The minimizer of this expression provides the sought function EX(u(x)) presenting the solution 

to the problem. 

4.2 Hashin-Shtrikman variational principles 

4.2.1 Comparison problem 

Following the original Hashin and Shtrikman idea, we consider two equivalent problems. First, 

the “real body”, which is a rod subjected to a uniform loading f(x) and an applied concentrated 

force F at the end of the beam. The beam is from a heterogeneous random material, therefore the 

modulus of elasticity is denoted as E(x;α). The “comparison body” is introduced in Figure 7, 

which is identical in geometry and loading to the real body in Figure 6, with the difference that 

the modulus of elasticity, E0 is assumed to be constant through the whole beam. To get an 

equivalent problem, the polarization stress τ is added to account for the difference between these 
two bodies. The aim here is to get the displacement u using the “comparison problem”. To this 
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end, we employ the Hashin-Shtrikman VP, where the unknowns are the polarization stress τ and 
the displacement field u.  

 

 
Figure 9 Real body 

 
Figure 10 Comparison body 

 

                                  Real body:                                Comparison body: 

 0( ; ) ( ; ) ( ; )         ( ; ) . ( ; ) ( ; )x E x x x E x xσ α α ε α σ α ε α τ α= = +  (3.29) 

    

In particular, the Hashin-Shtrikman functional for the current problem has the following form. 

 

[ ]

2
0

0

1 2
0

0

1
( , , ) ( ( )) ( ; ) ( ( )) ( ) ( ) ( )

2

1
( ; ) ( )

2

L

L

U v E v x x v x f x v x dx Fv L

E x E x dx

τ α ε τ α ε

α τ−

 = + − − 
 

+ −

∫

∫
 (3.30) 

It can be shown the saddle point of the functional delivers the value of displacement field u(x,α) 

and the true polarization stress τ(x ,α). Here v is a test function, τ is trial polarization stress and α 
denotes a realization. To demonstrate the equivalence between the Hashin-Shtrikman functional 

(3.30) and the original formulation, we need to subject U(v;τ;α) to variation once with respect to 

τ and once with respect to v. The variation with respect to polarization stress leads to 

 [ ]
1

0

0

( , , ) ( ) ( ( )) ( ) ( ; ) ( ) 0
L

U v x v x x E x E x dxτδ τ α δτ ε δτ α τ
−

= + − =∫  

for all variations δτ. Hence,  
 [ ] 1

0 0( ( )) ( ; ) ( ) 0 ( ; ) ( ; ) ( ; ) ( )v x E x E x E x x E x xε α τ α ε α ε α τ−
+ − = ⇒ = +  

which corresponds to the stress equivalence condition (3.29). The stationarity condition with 

respect to v gives the condition: 

 0

0

( , , ) ( ( )) ( ( )) ( ; ) ( ( )) ( ) ( )
L

uU v v x E v x x v x f x v x dxδ τ α ε δ ε τ α ε δ δ= + −∫  

Once we have established the validity of stress equivalence condition, the previous equation is 

clearly equivalent to the statement (3.26). Hence, these two problems are equivalent. 
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4.2.2 Displacement field decomposition 

From the point of view of numerical treatment of the problem, we introduce the following split 

of displacement field  
 0 1( ; ) ( ) ( ; )u x u x u xα α= +  (3.31) 

where u0(x) is the displacement of the comparison body from loading which is known, and 

u
1(x;α) is the displacement from the polarization stress which is our additional unknown.  First 
we write the stationarity conditions with respect to v. Similarly to (3.31), the test function v(x) 

can be divided into: 
 0 1( ) ( ) ( )v x v x v x= +  (3.32) 

With this split, the Hashin-Shtrikman functional has the following form 

 

0 1 0 1
0

0

0 1 0 1

0 1 1
0

0

1
( , , ) ( ( )) ( ( )) ( ( )) ( ( ))

2

( ; ) ( ( )) ( ( )) ( ) ( ) ( ( ))

1
( ( ) ( )) ( ; )( ( ; ) ) ( ; )

2

L

L

U v v x v x E v x v x

x v x v x f x v x v x dx

F v L v L x E x E x dx

τ α ε ε ε ε

τ α ε ε ε

τ α α τ α−

   = + +   

 + + − + 

− + − −

∫

∫

 (3.33) 

Recall that u0(x) is a solution for a problem with known deterministic loading without the 

polarization stress. Hence it satisfies the condition: 

 1 0 1 1
0

0

( ( )) ( ( ; )) ( ) ( ) ( ) 0
L

v x E u x v x f x dx v L Fε δ ε α δ δ − − = ∫  (3.34) 

Similarly, u1(x;α) follows from variational equation 

 0 1 0
0

0

( ( )) ( ( ; )) ( ( )) ( ; ) 0
L

v x E u x v x x dxε δ ε α δε τ α + = ∫  (3.35) 

Therefore, at the saddle point, the value of the Hashin-Shtrikman functional equals to 

 

0 1 0 0
0

0

1 1
0

0 0

1
( ( ; ), , ) ( ( ; )) ( ( ; )) ( ; ) ( ( ; )) ( )( ( ; ))

2

1 1
( ; )( ( ; ) ) ( ; ) ( ; ) ( ( ; )

2 2

L

L L

U u x u x E u x x u x f x u x

x E x E x dx x u x dx

α τ α ε α ε α τ α ε α α

τ α α τ α τ α ε α−

= + −

− − +

∫

∫ ∫
(3.36) 

The function u0(x), defined by Eq.(3.31), can be easily obtained using any appropriate numerical 

approximation method, see Section 4.3 and 4.4. The determination of u1(x;α), however, is a little 

bit more involved. In particular, we employ the Green’s function method for solution of this 

problem.  

4.2.3 Green’s function method 

The Green's function is an exact solution of the partial differential equations, one having an 

impulse forcing term at a point y, it is the response of the body (with appropriate boundary 

conditions) to a concentrated energy source. Technically, a Green's function of a linear operator 
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L at a point x0, is any solution of (Lf)(x) = δ(x − x0), where δ is the Dirac delta function.
1 Given 

the GF for a particular geometry, almost any problem can be solved by integration. It is known 

only for the simplest equations and specific geometries, such as the problem under consideration. 

 

It is shown on an example below, Figure 8, how to derive GF for a given structure. In 

particular,a  simply supported beam is shown in Figure 8(a), a unit force is applied at a given 

point y in the beam. The distribution of strain is plotted in Figure 8(b)  

 
 

Figure 11 Derivation of the Green’s function, (a) geometry, (b) normal forces, (c) strain 

distribution 

 

Recall that the Green function corresponds to the displacement due to concentrated force at y. 

From Figure 11, it can be easily seen that displacement field is given by 

 ( ) 0

0

( , ) ,

x
x y

E
u x G x y

y
x y

E

 ≤= = 
 >


 (3.37) 

It should be emphasized again, however, that such an analysis can only be performed in very 

special cases. Generally, one has to resort to a numerical approximation schemes leading to an 

approximate expression for the Green function Gh(x,y). More details about this procedure can be 

found in Chapters 5 and 6.  

 

Once the Green’s function is available, the strain field results from the equation  

 
1

0

( ; )
( ; ) 0

d du x
E x

dx dx

α
τ α

 
+ = 

 
 (3.38) 

                                                
1 The Dirac delta function, sometimes referred to as the unit impulse function and introduced by the British 

theoretical physicist Paul Dirac, can usually be informally thought of as a function δ(x) that has the value of infinity 

for x = 0, the value zero elsewhere. The integral from minus infinity to plus infinity is 1. 
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complemented with the same type of boundary conditions as for function u0(x), but now we 

consider the homogeneous values (zero displacement or zero stress). After rewriting Eq.(3.38) in 

the form: 

 
1

0

( ; )
( ) ( ( ; )) 0,

d du x d
E x

dx dx dx

α τ α+ =  

we can obtain function u1(x;a) using by parts integration,  

 [ ]1

0
0 0

( ; )
( ; ) ( ; ) ( ; ) ( ; )( ( ; )) ( ; ) .

L L
Ld G x y

u x G x y y dy G x y y y dy
dy y

α τ α τ α τ α
∂

= = −
∂∫ ∫  (3.39) 

The term in brackets disappears due to homogeneity of the boundary conditions. Finally, this 

leads to expression for the strain field due to polarization stress 

 ( )( )
2

1 1

0 0

( ; )
; ( ; ) ( ; ) ( ; ) ( ; ) .

L L
d G x y

u x u x y dy x y y dy
dx x y

ε α α τ α τ α
∂

= = − = − Γ
∂ ∂∫ ∫  (3.40) 

In the real-world application, we replace exact Eq. (3.40) with the approximate version 

 1

0

( ( ; )) ( ; ) ( ; ) .
L

hu x x y y dyε α τ α≈ − Γ∫  (3.41) 

Again, the particular choice of the discretized function Γh depends on the selected discretization 

scheme.  

4.2.4 Probabilistic averaging 

Using the results of the previous section, we are able to link the unknown strain field ε1(x;α) to 
the polarization stress τ(x;α), which now becomes the primary variable of the problem. In order 
to separate effects of the spatial variation and the stochasticity of the response, we introduce a 

following separable expression of the polarization field 
 ( ; ) ( ) ( ; ),r r

r

x x xτ α τ χ α=∑  (3.42) 

where τr denotes deterministic value of polarization field related to the r-th phase and χr is the 
characteristic function introduced in  Section 3.1.2 Now, we will proceed with considering a 

stochastic variational principle   

 
L

0

max  EX( ( ))= ( ; ) ( ) ,U U p dτ τ α α ατ ∫  (3.43)

In the view of following derivation, we decompose the Hashin-Shtrikman function into three 

parts, namely  

 
1

2 3

0 0 0 0
0

0

1
0

0 0 0

1
( ; ) ( ( )) ( ( )) ( ; ) ( ( )) ( )( ( ))

2

1 1
( ; )( ( ; ) ) ( ; ) ( ; ) ( ; ) ( ; )

2 2

L

L L L

h

I

I I

U u x E u x x u x f x u x dx

x E x E x dx x x y y dy dx

τ α ε ε τ α ε

τ α α τ α τ α τ α−

= + −

 
− − + − Γ 

 

∫

∫ ∫ ∫

�������

����������������� ���������������

 

Performing statistical averaging of integral I1 yields 
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0 0
1

0 0

0

0

EX( ) ( ; ) ( ( )) ( ) ( ) ( ; ) ( ( )) ( )

          ( ) ( ( )) ( ) .

L L

r r

rS s

L

r r

r

I x u x dxp d x x u x p d dx

x u x c x dx

τ α ε α α τ χ α ε α α

τ ε

= =

=

∑∫ ∫ ∫ ∫

∑∫
 

Treatment of integral I2 is a little bit more involved. In particular, we get 
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2 0
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1
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0
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( ) ( ) ( ; ) ( ( ; ) ) ( ) ( ; ) ( )

2

1
           ( ( ; ) ) ( ; ) ( ; ) ( ) ( ) ( ).
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τ χ α α τ χ α α α

α χ α χ α α ατ τ

−

−

  
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   

= − −

∑ ∑∫ ∫

∑∑∫ ∫
 

Taking into account the fact that  
 ( ; ) ( ; ) ( ; )r s rs rx x xχ α χ α δ χ α= , 

where δrs denotes the Kronecker’s delta with properties  

 
1   if r=s

= ,
0  if r srsδ


 ≠

 

we arrive at the expression 
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Now, we are left with statistical averaging of I3. This amounts to computing 
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, 0 0
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( ) ( ; ) ( ; ) ( ) ,

2

L L

r rs h s

r s

x S x y x y y dydxτ τ− Γ∑∫ ∫

 

where Srs is the two-point probability function introduced in Section 3.1.2 Collecting the 

resulting expressions for integrals I1, I2 and I3, we arrive at the statistically averaged 

approximated Hashin-Shtrikman functional, now expressed solely in terms of phase polarization 

fields τr  
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(3.44) 

4.2.5 Stationarity conditions 

In the last step of the analysis, we perform maximization of Eq. (3.44) with respect to phase 

polarization field. Stationarity conditions of the approximated Hashin-Shtrikman variational 
principle attain the form ( { },i m h∈ ): 

 

0 1
0

0 0

0

( ( )) ( ) ( ) ( ( )) ( ) ( )( ) ( )

                     ( ) ( ; ) ( ; ) ( ) 0.

L L
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L
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EX U x c x u x dx x c x E E x dx
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δτ τ δτ ε δτ τ
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−= − −

− Γ =

∫ ∫

∑∫ ∫
 (3.45) 

Eq. (3.45) still presents an infinite system of conditions to be fulfilled. To reduce these 

conditions to a finite-dimensional problem, a proper discretization scheme needs to be set up. 

This topic is covered in the following two chapters. 

5 Finite element method 

5.1 Introduction 

Generally speaking, FEM is a numerical technique for a boundary value problem. In its 

application, the object or system is represented by a geometrically similar model consisting of 

multiple, linked, simplified representations of discrete regions, i.e., finite elements. Equations of 

equilibrium, in conjunction with applicable physical considerations such as compatibility and 

constitutive relations, are applied to each element, and a system of simultaneous equations is 

constructed. The system of equations is solved for unknown values using the techniques of linear 

algebra or nonlinear numerical schemes, as appropriate. While being an approximate method, the 

accuracy of the FEM method can be improved by refining the mesh in the model using more 

elements and nodes. In the next sections, it is shown how to apply the FEM for solving the  

Hashin-Shtrikman problem. 

5.2 Solution u
0
(x) 

The solution of the homogeneous problem follows the standard finite element procedures, see, 

e.g. [5]. Nevertheless, we briefly repeat the basic steps of the method for the sake of clarity. The 

FEM starts with the condition for a weak solution, defined via variational statement (3.45) 
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 0
0

0

( ( )) ( ( )) ( ) ( )] ( ) 0,
L

v x E u x v x f x dx v L Fε δ ε δ δ− − =∫  (3.46) 

which should be satisfied for any kinematically admissible test function  δv. Within the standard 
FEM framework, the structure is discretized in n intervals of length h = L/n and (n+1) nodal 

points. The unknown displacement field u0 as well as test function δv together with their 
derivatives are approximated as 

 
( ) ( ) ( ) ( )
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δ δ
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≈ ≈

≈ ≈

N r N r

B r B r
 (3.47) 

where N(x) is a row matrix of piecewise linear basis functions, B(x) is the geometric matrix 

relating nodal displacements ru to strains. Inserting (3.47) into (3.46) yields  

 ( ) ,T T

u u u u f F
δ δ= +r K r r R R  

where the stiffness matrix and vector of equivalent nodal forces have the familiar form 
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0
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,

( ) ,

.

L
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T

f u

T

F u

x E x dx

x f x dx

L F

=

=

=

∫

∫

K B B

R N

R N

 (3.48) 

By arbitrariness of δru, we finally obtain the system of linear equations 
 ,u u u=K r R  (3.49) 

which allows us to finally obtain the approximation for displacement field. Note that the stiffness 

matrix Ku is symmetric and sparse. 

5.3 Function ΓΓΓΓh
 

Recall that application of Hashin-Shtrikman method needs an estimation of the Green’s function 

of the problem. Recall that the Green’s function corresponds to a displacement field at x for a 

unit force applied at a point y. It follows from Eq.  (3.49) that the nodal displacements for this 

loading satisfy the condition 
 ( )1T

u u u y=K r N  

and hence the discretized Green’s function is provided by relation 
 ( ) ( ) ( )1, .h T

u u u uG x y x y−= N K N  (3.50) 

Now we can easily obtain the relation for (negative value) of displacement field due to 

polarization by replacing the partial derivative with respect to y in Eq. (3.39) with the 

multiplication by the Bu matrix  
 ( ) ( ) ( )1, .h T

u u u ux y x y−Γ = N K B  (3.51) 

Repeating the same argument for Eq. (3.40) leads to the final expression 
 ( ) ( ) ( )1, .T

h u u ux y x y−Γ = B K B  (3.52) 

Note that for the adopted piecewise linear basis function the matrix function Bu(y) is piecewise 
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constant on each element e=1, 2, … ,n. Due to this fact, is suffices to “sample” functions (3.51) 

and (3.52) on a set of integration points ξe, e=1, 2, … ,n, each located in the center of each 

element. The examples of these functions are shown in the following figure for different 

parameters h. 

 

  
(a) (b) 

  
(c) (d) 

Figure 12 Examples of displacement and strain Green’s function approximated by FEM 

(a,b) Function Γh, (c,d) Fu. Mesh parameters are n=120,h=0.2 and n=60,h=0.5, respectively, 
E0=1 Pa, L=1 m  

  

 Comparing these approximations with the analytical formulas(3.37), we see that the FEM 

provides indeed a very reasonable approximation for the exact Green’s function within the 

limitation imposed by a finite mesh size h (observe changes in the magnitude in Figure 12(a,b)). 

5.4 Solution of the polarization problem 

Having solved the auxiliary problem and determined an appropriate expression, we are left with 

the unknown phase polarization stresses τr. Recall that this quantity follows from stationarity 
conditions   
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0

0 0

0 0

0 ( ) ( ) ( ( )) ( ) ( )( ) ( )

  ( ) ( ; ) ( ; ) ( )

L L

i r i r r i

L L

i ij h j

j

x c x u x dx x c x E E x dx

x S x y x y x dydx

δτ ε δτ τ

δτ τ

−= − −

− Γ

∫ ∫

∑∫ ∫
 (3.53) 

To this end, we introduce an approximation of polarization stresses and corresponding weight 

functions in the form 
 ( ) ( ) , ( ) ( ) .i i

i ix x x xτ τ τ ττ δτ δ≈ ≈N r N r  (3.54) 

Notice that because the unknown polarization field appears only in the 0-th derivative in 

Eq. (3.53), it suffices to select piecewise constant basis functions Nτ. Then, the vector of 
unkowns i

τr has the physical meaning of polarization stress related to the phase i at integration 

points ξe within the structure. The stationarity conditions (3.53) can now have a particular form  

 ( ) ( ) ( ) ,
T T T

i i i i ij j i i

j

τ τ τ τ τ τ τ εδ δ δ+ =∑r K r r K r r R  (3.55) 

where the individual matrices are defined as 
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L
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x c x E E x dx
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x c x x dx

τ τ τ

τ τ τ

ε τ ε
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∫

∫ ∫

∫

K N N

K N N

R N

 (3.56) 

By arbitrariness of i

τδr , we obtain that for a two-phase media (with an obvious generalization for 

multi-phase materials) the condition (3.55) is equivalent to the system 

 
1 11 12 1 1

21 2 22 2 2

τ τ τ τ ε

τ τ τ τ ε

    +
=    +     

K K K r R

K K K r R
, (3.57) 

which will shortly be denoted as 
 τ τ ε=K r R . (3.58) 

It can be easily deduced from properties of Γh and Sij that it holds, that ( )12 21 T

τ τ=K K . Hence, the 

stiffness matrix Kτ is symmetric dense n n× matrix, which is negative definite provided that 

( )0 min iE E< ; see, e.g., [6] for a rigorous proof. Solving system (3.58) allows us to obtain phase 

polarization stresses at individual integration points. 

 

Recall that for the adopted discretization (u0 linear, τi piecewise constant), the individual terms 
up to Sij and ci are piecewise constant on each element e. Hence, it appears to be reasonable to 

approximate integrals using one-point quadrature rule. The individual terms in (3.56) have the 

form 
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( ) ( ) ( ).

i T

e i e i e

e

ij T

e h e e ij e e e

e e

i T

e i e e

e
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ξ ξ ε ξ
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≈ Γ

≈

∑

∑∑

∑

K N N

K N N

R N

 (3.59) 

Note that the approximations in Eq. (3.59) are exact when the variation of Sij and ci is linear. 

However, this is not the case of the adopted microstructural model and hence this step certainly 

introduces additional error into the solution.  

5.5 Results postprocessing  

The last step of any numerical scheme is determination of the resulting quantities of interest. In 

our context, this means determination of expected values of displacements EX(u), strains EX(ε) 
and stresses EX(σ). Nevertheless, as the first step, the expected value of the polarization field is 
obtained at individual integration points 
 ( )( ) ( ) ( ) ( ) ( )EX x EX ,i i

i

x x c xτ τ τ ττ = = ∑N r N r  (3.60) 

Now we can evaluate the expected value of displacement field using already derived function h

uΓ , 

recall Eq. (3.51), 
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 (3.61) 

For the introduced discretization scheme, the expected value on nodal displacement EX(ru) can 

be obtained using the one-point quadrature 

 ( ) ( ) ( ) ( )1EX EXT

u u u u e e

e

h τ τξ ξ− 
≈ −  

 
∑r r K B N r . (3.62) 

Having established the expected value of nodal displacement, remaining steps are 

straightforward. Strain field can be directly obtained from previous equation as 
 ( )( ) ( )EX EX( )u ux xε ≈ B r  (3.63) 

and the stress field can be computed as 
 ( )( ) ( )( ) ( )( )0EX EX EX .x E x xσ ε τ= +  (3.64) 

This is actually the last step of the FEM-Hashin-Shtrikman approximation method.  

5.6 Algorithmic details of FEM-Hashin-Shtrikman solution 

The whole algorithm introduced in this chapter can be summarized in the following steps:  
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Step 1 – Initialization : 

• Divide the structure into n finite elements of length h 

• Generate nodal and integration points for each element 

 

Step 2 – Solution of homogenous problem: 

• Assemble the local stiffness matrix Ku for each element 

• Construct the global stiffness matrix Ku by localization according to Eq.(3.48) 

• Assemble the vector of nodal loading Ru according to Eq.(3.48) 

• Solve the equilibrium equation Ku ru = Ru and get the displacement vector ru according 

to Eq.(3.49) 

• Compute strain-displacement  transformation matrix Bu 

• Evaluate strain ε = Bu ru approximated by Eq.(3.47) 

• Solve system:  Ku Γu = Bu according to Eq.(3.51) 

• Get discrete Green’s function: Γh = BTu Γu  according to Eq.(3.52) 
Step 3 – Geometry analysis: 

• Compute local volume fraction at any point x according to Eq.(3.18) 

• Calculate two point probability function  Smm according to Eq.(3.15) 

Step 4 – Hashin-Shtrikman approximation: 

• Solution to the polarization problem: Kττττ rττττ = Rττττ        according to Eq.(3.57) 
• Use approximation i

i
x xτ ττ ≈( ) N ( )r  

Step 5 – Post processing of results: 

• Evaluate the expectation values for the displacement, stress and strain according to 

Eq.(3.60),(3.61),(3.63) and (3.64) 

• Plot the graphs 

We refer an interested reader to Section 10.2 for a more concrete implementation of individual 

steps. 

6 Boundary element method 

6.1 BEM introduction 

Boundary Element Methods (BEM) is a very powerful numerical method which can solve 

complex problems in a wide variety of engineering disciplines, e.g. fluid mechanics, solid and 

fracture mechanics, acoustics, etc. The boundary (rather than the volume) of a domain is 

discretized into panels on which the related quantities (e.g. velocity potential, displacements and 

tractions, acoustic, temperature, etc) are approximated with distributions of known shape but of 

unknown strength. The unknown strengths are determined by applying the specified boundary 

conditions, and by solving an integral equation (e.g. Green's identity) over the boundary. 

 

In BEM, the structure is divided into infinite bodies and the equations contain only boundary 
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integrals (and no domain integrals as in Finite Elements) It relates the value of u at some point 

inside the solution domain to integral expressions involving u and
u

n

∂
∂
 over the boundary of the 

solution domain. Rather than having an expression relating the value of u at some point inside 

the domain to boundary integrals, a more useful expression would be one relating the value of u 

at some point on the boundary to boundary integrals. 

 

Before one applies the boundary element method to a particular problem one must obtain a 

fundamental solution (which is similar to the idea of a particular solution in ordinary differential 

equations and is the weighting function). Fundamental solutions are attached to the Dirac delta 

function. The fundamental solution of a particular equation is the weighting function that is used 

in the boundary element formulation of that equation.  

 

These principles are illustrated in detail in the following text. However, since the BEM is not so 

frequently used in civil engineering, we slightly depart from the analysis presented in Chapter 5 

and present a detailed treatment the stochastic problem within the framework of boundary 

integral equations (BIE) in Section 6.2. Then, we quickly proceed in the spirit of FEM-based 

analysis, recovering the solution of the homogeneous problem, finite body Green’s function 

approximation, solution of the polarization problem and postprocessing of the results. The 

chapter is concluded with algorithmic scheme of BEM-Hashin-Shtrikman method. 

 

6.2 BEM approximation in one dimension 

6.2.1 Infinite body Green’s function 

Unlike FEM, which uses identical approximation for the unknown variable as well as weight 

function, BEM builds on a solution for infinite body, defined from -∞ to +∞. This function is 

generally available for more-dimensional geometries, see, e.g. [5],[7]. It is defined exactly in the 

same way as for the finite-body case, see Section 4.2.3., 

 
2

0 2

( ; )
( ) 0

G x y
E y

x
δ

∂
+ =

∂
. (3.65) 

Observe that now, however, the Green’s function must be transitionally invariant due to 

infiniteness of the body. It can be rather easily seen that the one-dimensional Green’s function 

satisfying the translation invariance has the form 

 0

1
( ; ) .

2
E G x y x y∞ = − −  (3.66) 

In the subsequent derivations, we will utilize the following partial derivatives: 

 0 0

( ; ) 1 ( ; ) 1
( ) ,       ( ) ,

2 2

G x y G x y
E H y x E H y x

x y

∞ ∞∂ ∂
= − − = − − +

∂ ∂
 (3.67) 
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( ),       ( ),

G x y G x y
E y E y

x x y
δ δ

∞ ∞∂ ∂
= − =
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 (3.68) 

where H is the Heaviside step function (the Dirac delta function is the slope of the Heaviside step 

function). 

 
1   0

( )  .
0   0

x
H x

x

>
=  <

 

6.2.2 General relations 

Recall that the following ordinary differential equation (ODE) with constant coefficients needs 

to be solved (equilibrium condition): 

 0

( ; )
( ; ) ( ) 0

d du x
E x f x

dx dx

α
τ α + + = 

 
 

plus the boundary conditions 

 
0

(0; ) 0,

( ; )
( ; ) ( ; ) .

u

du L
E L R L F

dx

α
α

τ α α

=

+ = =
 

The BEM method starts from the notion of very weak solution, which basically follows from 

applying twice per partes integration to the following identity (weak solution): 

 0

0 0

( ; )
( ) ( ; ) ( ) ( ) 0

L L
d du x

v x E x dx v x f x dx
dx dx

α
τ α + + = 

 ∫ ∫  

After the first by-part integration it results: 

 [ ] 00
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α
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After the second by-parts integration: 

 

[ ]
2

0 020
00 0 0
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The test function v(x) is selected in the particular form (assume that y is arbitrary but fixed for 

each realization): 
 ( ) ( ; )v x G x y∞=  

By inserting the test function into the previous equation we obtain the identity: 
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0 020
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( ; ) ( ; ) ( ; ) ( ; ) ( ; )

( ; ) ( ) 0

LL L
L

L

G x y G x y G x y
G x y R x x dx E u x E u x dx

x x x

G x y f x dx

α τ α α α
∂ ∂ ∂ − − + ∂ ∂ ∂ 

+ =

∫ ∫

∫
 

Hence the displacement at any point ( )0,y L∈ follows from: 

[ ] 00
00 0

( ; ) ( ; )
( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( )

LL L
L G x y G x y

u x G x y R x x dx E u x G x y f x dx
x x

α α τ α α
∂ ∂ = − − + ∂ ∂ ∫ ∫  

Inserting the relations(3.67), (3.68) into the previous equation leads to 
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 (3.69) 

In the following computation, a value of strain ε at any point needs to be evaluated. It follows 
from general expression 
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which, when specialized for the particular Green’s function, reduces to 
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 (3.70) 

Note that both relations for strain and displacement field are explicit, once the boundary data 

u(0;α), u(L;α), R(0;α) and R(L;α) are specified, provided that it is assumed that polarization 
stress τ is given. From these mentioned quantities, two are always specified due to geometry and 
boundary conditions. The remaining two are obtained from the boundary equations (3.69) for 

y→0+ and y→L-. 

While y approaches the boundary, care should be taken in order to treat the Heaviside function 

correctly, due to the different boundary conditions. Therefore, the passage is done in two 

separate steps: 
For 0y +→   

0
0 0 0 0
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Similarly, for y L−→ , we obtain: 
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In overall, the boundary data must satisfy the following system of linear equations: 

  

 0 0

0 0

(0; ) ( ; ) ( ; ) ( ; ) ( )
L L

E u E u L LR L x dx xf x dxα α α τ α− + = −∫ ∫  (3.71) 

 0 0

0 0

(0; ) ( ; ) (0; ) ( ; ) ( ) ( )
L L

E u E u L LR x dx x L f x dxα α α τ α− + − = − + −∫ ∫  (3.72) 

 

As for the finite element discretization, the problem is divided into two steps; deterministic and 

stochastic part; and solved separately. Details on solution of individual steps are presented in the 

following two subsections. 

6.3 Solution u0(x) 

Recall that the solution u0 corresponds to the original problem with τ =0 Pa and “real” boundary 
conditions. Therefore, the system of equations(3.71),(3.72) has the form: 
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 (3.73) 

which can be used to determine all the boundary quantities. Once these values are obtained, the 

displacement at any internal point of the structure follows from the expression below, see 

Eq.(3.69) 
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0 0000

1 1 1
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∫ (3.74) 

and the strain ε0 follows from  

 0 0 0

0 0 0

1 1
( ) ( (0) ( )) ( ) ( ) .

2 2

y L

y

y R R L f x dx f x dx
E E

ε
 

= + + −  
 
∫ ∫  (3.75) 

6.4 Solution u1(x;α) 

The solution u1(x;α) corresponds to the solution of the original problem with zero distributed 
loading (f(x)≡0) and with zero prescribed boundary data (F=0 N). The BEI for this case has the 
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form: 
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 1 1 1
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L

E u L E u L LR x dxα α α τ α− + − = −∫  (3.77) 

Once the data are determined for a realization α, the strain at any point (0, )y L∈ follows from 
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2
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Recall that the application of the Hashin-Shtrikman principles builds upon relation of strains and 

polarization stresses via 
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It follows from the second term in Eq. (3.78)that in the BEM discretization, the Γh function 
contains the following Γ∞ for the finite body. The first term then takes into account the finite 
dimension of the analyzed domain. The additional term can be obtained as follows. First, the 

auxiliary problem of Eq(3.76),(3.77) is solved with the special right hand side, 
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and compute an auxiliary variable as 
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Then Eq.(3.78) can be written as 
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and identify the (BE approximation) to the finite body Green’s function as 

 
0

1
( , ) ( ) .h x y y

E
δΓ = −Γ  (3.80) 

Note that for the present statically determinate case, Γ=0 and the BEM gives the exact solution. 

This basically completes the BEM approach to descritization of Hashin-Shtrikman variational 

principles. Indeed, note that when an identical discretization of polarization stress τ is employed 
 ( ) ( )i ix xτ ττ ≈ N r  

the only terms which differ from the FEM approximation, see Eq. (3.56), are matrices ij
τK . They 

now have the form  
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      ( ) ( ) ( )
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h ij
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E

c x
x x dx x S

E

τ τ τ

τ τ

τ τ τ τ

τ τ τ

δ

δ

= Γ

 
= − − Γ 

 

= −Γ

= −Γ

∫ ∫

∫ ∫

∫ ∫ ∫

∫

K N N

N N

N N N N

N N N
0 0

( ; ) ( ) .
L L

ij x y y dxdyτ∫ ∫ N

 (3.81) 

The one-point-quadrature approximation to submatrices is now given by  

 
( ) 2

' '
'0

 ( ) ( ) ( ) ( ; ) ( ).i e ijij T T

e e e ij e e e

e e e

c
h h S

E
τ τ τ τ τ

ξ δ
ξ ξ ξ ξ ξ ξ≈ − Γ∑ ∑∑K N N N N  (3.82) 

The rest of the solution procedure exactly duplicates the one presented in Section 5.4.  

6.5 Post-processing results 

Once the values of polarization stresses are obtained from stationarity conditions of Hashin-

Shtrikman variational principles, the expected values of boundary data follows from the 

statistically averaged form of local boundary equations (3.76), (3.77) 

 1 1 1
0 0

0

( (0)) ( ( )) ( ( )) ( ( )) ,
L

E EX u E EX u L L EX R L EX x dxτ− + ⋅ = ∫  (3.83) 

 1 1 1
0 0

0

( (0)) ( ( )) ( (0)) ( ( )) ,
L

E EX u E EX u L L EX R EX x dxτ− + − ⋅ = −∫  (3.84) 

where 
 ( ( )) ( ) ( )i

i

i

EX x c x xτ τ=∑  

Hence the expected value of the displacement field follows from Eq. (3.69) as 

  

 

1 1
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( ( )) ( ( )) ( ) ( ( ))

2 2
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                    ( ) ( ( ))
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1 1
                 ( ( )) ( ( (0)) ( ( )))

2 2

             

L L
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E E

H y x EX u x

x y EX R x EX u EX u L
E

τ
   = − − − − −   

  

  − − −    

 
= − − − + 

 

∫

0 0

1
    ( ( )) ( ( ))

2

y L

y

EX x dx EX x dx
E

τ τ
 

− −  
 
∫ ∫

 (3.85) 

 

Expected value of strain field follows directly from (3.70)   
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 ( ) ( )( ) ( )1 1 1

0 0

1 1
EX( ( )) EX (0) EX ( ) EX ( ) .

2
y R R L x

E E
ε τ= + −  (3.86) 

Once the expected values of fields due to polarization are determined, we can apply the 

superposition principle to get 

 

( ) ( )
( ) ( )
( ) ( )

0 1

0 1

0

EX ( ) EX( ( )),

EX ( ) EX( ( )),

EX ( ) EX ( ) EX( ( )).

u x u x u x

x x x

x E x x

ε ε ε
σ ε τ

= +

= +

= +

 (3.87) 

6.6 Algorithmic details of BEM-Hashin-Shtrikman solution 

 

Step 1 – Initialization : 

• Define integration points ξ on the intervals (0,L) and nodal points x 
Step 2 – Solution of homogenous problem: 

• Assemble the stiffness matrix Ku according to Eq. (3.73)  

• Assemble the right hand side Ru according to Eq. (3.73) 

• Solve the system Ku ru = Ru and get deterministic values of the displacement at nodal 

points x according to Eq.(3.74) 

• get deterministic strains at points ξ according to Eq.(3.75) 
• Evaluate Γr (a constant value added to the Green’s function for the infinite body) (by 

solving again the system: r0=K/R) according to Eq.(3.79). 

Step 3 – Geometry analysis: 

• Compute local volume fraction cm at any point x according to Eq.(3.18) 

• Calculate two point probability function Smm according to Eq.(3.15) 

Step 4 – Hashin-Shtrikman approximation: 

• Assemble the stiffness matrix Kτ according to Eq.(3.82) 

• Solution to the polarization problem: Kττττ rττττ = Rτ  τ  τ  τ  according to Eq.(3.57) 
• Use approximation ( ) ( ) i

i x xτ ττ ≈ N r  

Step 5 – Post processing of results: 

• Evaluate the expectation values for the displacement, stress and strain according to 

Eq.(3.87) 

• Plot the graphs 

7 Numerical examples 

The first structure studied, is a 1D rod of length L, with left end clamped and free right end. The 

structure has Young's modulus E(x,α) and is discretized into n linear finite elements (of size h) 

for the finite element method-based analysis. Two different load cases are studied by both FEM 

and BEM approach and a comparison is made: 

a) subjected to a uniform loading with intensity f=1Nm-1 
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b) subjected to applied force F=1N at the right end 

 

For each method and loadcase, we plot the distribution of expected values of displacement 

EX(u(x)), strains EX(ε(x)), stresses EX(σ(x)) and polarization stresses EX(τ(x)) are shown below. 
The performance of a given method methods are shown by plotting the graph convergence of the 

displacement for x=L of the numerical solution to the exact one. An investigation is also made 

on the rate of the convergence of the method FEM influenced by two factors: 

• ratio of Em/Eh 

• size of microstructure l. 

For the sake of completeness, an example for a material with uniform intensity (i.e. ρa=ρb) is 
also presented. Again, we refer an interested reader to Sections 10.2 and 10.3 for more details 

about the actual implementation of the algorithms.  

7.1 FEM examples 

7.1.1 Structure with non-uniform intensity 

7.1.1.1 Expected values -- Load case a 

  

(a) Expected value of  displacement u(x) (b) Expected value of strain ε(x) 

  

(c) Expected value of stress σ(x) (d) Expected value of stress τ(x) 

Figure 13 Expected values, Em= 2Pa, Eh=20 Pa, L=2m, l=0.05m 
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7.1.1.2 Expected values -- Load case b 

 

  

(a) Expected value of  displacement u(x) (b) Expected value of strain ε(x) 

  

(c) Expected value of stress σ(x) (d) Expected value of stress τ(x) 

Figure 14 Expected values, Em= 2Pa, Eh=20 Pa, L=2m, l=0.05m 
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7.1.1.3 Convergence study--Influence of ratio of Em/Eh 

 

 
 

(a) Em/Eh =0.1 (b) Em/Eh =0.4 

  

(c) Em/Eh=0.6 (d) Em/Eh =0.8 

Figure 15 Influence of Em/Eh on convergence of FEM 
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7.1.1.4 Convergence study -- Influence of size of the microstructure l 

 

 
 

(a) l/L=0.025 (b) l/L=0.0125 

  

(c) l/L=0.05 (d) l/L=0.1 

Figure 16 Influence of l/L on convergence of FEM 
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7.1.2 Example of structure with uniform intensity 

Expected values -- Load case a 

 

  

(a) Expected value of  displacement u(x) (b) Expected value of strain ε(x) 

  

(c) Expected value of stress σ(x) (d) Expected value of stress τ(x) 

Figure 17 Expected values, Em= 2Pa, Eh=20 Pa, L=2m, l=0.05m 
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7.2 BEM examples 

7.2.1.1 Expected value - Load case a: 

  

(a) Expected value of  displacement u(x) (b) Expected value of strain ε(x) 

  

(c) Expected value of stress σ(x) (d) Expected value of stress τ(x) 

 

Figure 18 Expected values, Em= 2Pa, Eh=20 Pa, L=2m, l=0.05m 
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7.2.1.2 Expected value - Load case b: 

 

 

  

(a) Expected value of  displacement u(x) (b) Expected value of strain ε(x) 

  

(c) Expected value of stress σ(x) (d) Expected value of stress τ(x) 

 

Figure 19 Expected values, Em= 2Pa, Eh=20 Pa, L=2m, l=0.05m 
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8 Conclusions and future work  

From the results of the graphs, it can be concluded that FEM and BEM Hashin-Shtrikman 

approximations give identical results, which can be seen from the graph convergence of both 

methods 

  
(a) Convergence of FEM (b)Convergence of BEM 

Figure 20 Comparison FEM/BEM 

The factors that influence the convergence are the size of microstructure, l/L, and the ration of 

Em/Eh. It can be seen from the Figure 12 and Figure 13 that the closer is the ratio of Em/Eh  to one 

and the bigger l/L are, the more accurate the solution is. 

Comparing the both methods, homogenization method and variation by Hashin-Shtrikman 

method, it can be concluded that the Hashin-Shtrikman variation gives good enough result and is 

more convenient to use since it takes much less time for calculation compared to homogenization 

method. Both results can be seen in the figure below: 

 

In general, the difference between two numerical methods can be summarized as follows 

• Solution of the homogeneneous problem 

o FEM: The structure is divided into n finite elements and for each element the 

displacement u is computed. Solution on n x n sparse system of equations is 

needed. 

o BEM: The structure is divided into infinite bodies and the equations contain only 

boundary integrals. It relates the value of u at some point inside the domain to an 

integral expression involving u and
u

n

∂
∂
 over the boundary. The dimension of the 

linear system to be solved is by one order less than for FEM. 

• Solution of the stochastic problem 

o FEM:  For stochastic solution, the Green’s function is needed which in the case 

of FEM, the discrete Green’s function is evaluated. This is quite a costly part of 

the algorithm. 

o BEM: In this case, the Green’s function is assumed to be known, only Γr needs to 
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be evaluates which is a constant value added to Green’s function for the infinite 

body. This presents a significant advantage when compared to the FEM. 

For both methods, a symmetric dense n x n system of equations is solved. In this step, BEM 

formulation does not have any advantage over the FEM.  

 

 

(a)Displacement u(x) from Monte-Carlo 

simulation 

(b)Displacement u(x) from Hashin-Shtrikman 

variational method 

Figure 21 Comparison of results from the statistical and the numerical methods 

 

In the future work, the next logical step is to generalize the solution to more dimensions.  This is, 

however, a rather complicated task which goes beyond the scope of the diploma project. Once 

this step is completed, the resulting formulation is very well suited for optimization studies of 

statistically inhomogeneous material systems. The specific non-linear behavior of materials can 

also be considered. Hopefully, these topics will be covered in the future research work. 
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10 Appendices 

In the appendices, a substantially shortened version of the codes used to compute the presented 

results is gathered. In particular, Section 10.1 described code used for Monte-Carlo simulations 

written in MathCAD®, while Sections 10.2 and 10.3 show excerpts from the Hashin-Shtrikman 

algorithm in MATLAB® environment. 

10.1 Simulation method 

10.1.1 Non-uniform intensity 

l is the fiber length, L is the rod lenght 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L 2:=  

ρ a
ln 0.2( )−

l
:=  ρb

ln 0.8( )−

l
:=  

Intensity function: 
ρ x( ) ρ a 0 x≤ a<if

ρ a
ρb ρ a−

b a−








x a−( )+ a x≤ b<if

ρb b x≤ L≤if

:=  

t is a generation of the geometry 

t Range 0 L,( ):=  

 nf
x
i

if t
i 1, t

i 0,− l 1, 0,( )←

i 0 length t
0〈 〉( ) 1−..∈for

x∑

:=  

 

if the length of the segment ti1-ti0 is d then a fiber is there 

nf counts the number of the fibres in the rod 
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seq

i
k

if t
k 1, t

k 0,− l 1, 0,( )←

k 0 length t 0
〈 〉( ) 1−..∈for

i

:=

 
 

 

 

 

 

 

 

 
N x( ) N f x L x−( )⋅+ :=

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Expected value of E(x): 
EXe x( ) cm x( ) f1 0( )⋅ 1 cm x( )−( ) f2 0( )⋅+:=

 
 

seq is the characteristic function: 
If seq=1 => χm(x)=1 <=> x is in the matrix phase 

If seq=0 => χf(x)=1  <=> x is in the fiber phase 

f1(x) and f2(x) is the value E1 and E2 for the matrix and 

fibers respectively  

f1 x( ) 2:=  

f2 x( ) 20:=  

E x( ) rng t 1
〈 〉

←

n 0←

n n 1+←

x rng
n

≥while

k seq
n

←

f
k
x

:=  

E(x) assigns the values f1 and f2 to the fibers 

using the range and seq. 

k<-seqn: For seq=0 use f1, for seq=1 use f2 

                            

σ x( )
N x( )

A
:=  Normal stress 

ε x( )
σ x( )

E x( )
:=  Normal strain 

u x( )
0

x

xε x( )
⌠

⌡

d








:=  Deformation 

LOOP: 

n is the number of times (different rods)  

M

m
i t, Range 0 L,( )←

i 0 k
t

1−..∈for

t 0 4..∈for

m

:=  
cm x( ) exp ρ a− x⋅( ) 0 x≤ l≤if

exp ρ a− l⋅( ) l x< a≤if

exp ρ a− l⋅

ρ b ρ a−

b a−

2
x a−( )

2
−











a x< a l+≤if

exp ρ a− l⋅

ρ b ρ a−

b a−

2
l 2 x a−( )⋅ l−[ ]⋅−











a l+ x< b≤if

exp ρ b− l⋅

ρ b ρ a−

b a−

2
x b− l−( )

2
+











b x< b l+≤if

exp ρ b− l⋅( ) b l+ x< L≤if

:=

 
M generates z different samples (geometries) for n realizations:  

Local volume fraction matrix: 

Theoretical (expectation) value for displacement u (EX(u(x))): 
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U

x 0←

a
t l, u x( )

t
←

x x
L

10
+←

l 0 10..∈for

a

t 0 4..∈for:=

 
 

Plot graph U,EXu(x). 

 

10.1.2 Uniform intensity 

 

 

 

 

 

 

 

 

seq

i
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k 0,− l 1, 0,( )←

k 0 length t
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EXu1 x( )
1
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EXe x( )
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⌠


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

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σ x( )
N x( )
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:=  ε x t,( )

σ x( )

T x( )
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x

xε x t,( )
⌠

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d








:=  

u x( )

u
t

u x t,( )←

t 0 4..∈for

u

:=  

l .05:=  L 2:=  l is the fiber length, L is the rod lenght 

t Range 0 L,( ):=  t is a generation of the geometry 

nf
x
i

if t
i 1, t

i 0,− l 1, 0,( )←

i 0 length t
0〈 〉( ) 1−..∈for

x∑

:=  

 

nf counts the number of the fibres in the rod 

if the length of the segment ti1-ti0 is d then a fiber is there 

seq is the characteristic function: 
If seq=1 => χm(x)=1 <=> x is in the matrix phase 

If seq=0 => χf(x)=1  <=> x is in the fiber phase 

f1(x) and f2(x) is the value E1 and E2 for the matrix and 

fibers respectively  

f1 x( ) 2:=  

f2 x( ) 20:=  
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N x( ) N f x L x−( )⋅+ :=

 
 

 

 

 

 

 

 

 

 

 

 

 

p is the array that gathers the ranges and the intensities 
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using the range and seq. 
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LOOP: 

n is the number of times (different rods)  
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Plot graphs U,EXu(x). 

 

10.2 Hashin-Shtrikman FEM method 

Appendix[b] - FEM_Hashin-Shtrikman method 

 

function [x,xi,EXu,EXe,EXs,EXtau ] = fem_hs( rho, n, E, E_0, L, l, F, f ) 

 

•  Step 1 - Initialization 

  h = L / n;   Length of one finite element 

  x = Location of nodal points 

  xi= Location of integration points 

 

• Step 2 - Solution of homogeneous problem 

EXu x( )
1

A
0

x

xN x( ) EXet⋅
⌠

⌡

d






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A
:=  ε x t,( )
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:=  u x t,( )
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xε x t,( )
⌠

⌡

d








:=  
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-computes the FEM approximation to the homogeneous solution of the 

problem   of a 1D rod of length L with left end clamped and right 

end loaded by force F subject to the uniform loading with 

intensity. The structure has Young's modulus E_0 and is 

discretized into n linear finite elements.  

 -h =Size of the finite element 

-Assemble the stiffnes matrix K 

-Assemble the vector of generalized loading 

-Solve the system of equilibrium equations Kr = R 

-Geometric matrix 

-Get Green's functions 

 

•  Step 3 - Geometry analysis 

-c_m = volume fraction 

-S_mm = two point probability 

-Function to compute local volume fractions at point x model of 

fully penetrable intevals of length l distributed randomly on 

interval <0,L>. The expected number of intevals is described by 

function rho. 

• Step 4 - Hashin-Shtrikman approximation 

   -E : ( num_materials, 1 ) matrix of material parameters 

   -E0 : reference material 

   -cm: ( n, 1 ) matrix of local volume fractions at element integration points 

-Gamma_h : ( n, n ) matrix of Green's function at element     

integration points 

  -n : number of finite elements 

  -h = Length of one element 

  -num_m = Number of materials 

-Set stiffness matrix  

-Set the diagonal values   

-Reshape the matrix 

 K = diag( K ); 

-Right hand side vector R 

-Solve the system  

 tau = K \ R 

-Determine values of tau in indvidual phases 

• Step 5 - Post-processing of results  

 -num_m= Number of phases 

 -EXtau = Expected value of polarization stresses 



 55 

-Strain postprocessing 

 -EXe  = e_0 - Gamma * EXtau * h; 

-Stress postprocessing 

 EXs = E_0 * EXe + EXtau; 

-Displacement postprocessing 

 EXu  = u_0;  Reference homogeneous solution  

Example: 

Example of FEM solution 

 

Geomety of microstructure 

L = 2.;  Macroscopic length of the stucture 

l = .05;  Microscopic dimension of heterogeneity 

 Mechanical parameters 

E   = [ 2., 20. ];  Young's moduli of individual phases [ E_m, E_h ] 

E_0 = .5 * min( E );  Reference value of Young's modulus 

Loading  

F = 0.;   End force 

f = 1.;   Intensity of distributed load 

Discretization 

n = 40;  Number of finite elements 

Solve problem 

Plot solution 

 

10.3 Hashin-Shtrikman BEM method 

Appendix[c] - BEM_Hashin-Shtrikman method 

 

• Step 1 - Initiation 

h = L / n;   Length of one finite element 

x  = Location of nodal points 

xi = Location of integration points 

• Step 2 - Solution of homogeneous problem 

- Assemble the stiffnes matrix K 

- Assemble the right hand side R 

- Solve the system r = K \ R;   

- Evaluate u_0displacements 

- Boundary values 

  u_0(1) = r(1);  
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  u_0(n) = r(2);  

- Evaluate Gamma_R 

- Change RHS 

  R = [ 1, -1, 0., 0. ] 

- Solve system again 

  r_0 = K \ R; 

• Step 3 - Geometry analysis 

-c_m = volume fraction matrix  

-S_mm = two point probability 

-volfrac_m( rho, x, l, L ) Function to compute local volume 

fractions at point x  model of fully penetrable intervals of 

length l distributed randomly on interval <0,L>. The expected 

number of intervals is described by function rho. 

-compute two-point probability function Smm(x,x) for a model of 

fully penetrable rods of length l on interval <0,L> 

• Step 4 - Hashin-Shtrikman approximation 

- E : ( num_materials, 1 ) matrix of material parameters 

- E_0 : reference material 

- c_m : ( n, 1 ) matrix of local volume fractions at element 

integration points 

- Gamma_h : ( n, n ) matrix of Green's function at element 

integration points 

- n = Number of of elements 

- h = L / n;   Length of one element 

- num_m = Number of materials 

- Set stiffness matrix  

- S_mm based part of the stiffness matrix 

- Assemble stiffness matrix 

- Right hand side vector R 

- Solve the system tau = K \ R 

- Determine values of tau in indvidual phases 

• Step 5 - Post-processing of results  

   - num_m = Number of phases 

- h = y( 2 ) - y( 1 );   Step of discretization 

- Expected value of polarization stresses 

- Strain postprocessing 

- Stress postprocessing 

EXs = E_0 * EXe + EXtau 

- Displacement postprocessing 
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 EXu = EXu + u_0 

 

Example: 

Example of BEM solution  

Geomety of microstructure 

L = 2.;  Macroscopic length of the stucture 

l = 0.05;  Microscopic dimension of heterogeneity 

intensity_function = Gradation profile 

Mechanical parameters 

E   = [ 2., 20. ];   Young's moduli of individual phases [ E_m, E_h ] 

E_0 = .5 * min( E );   Reference value of Young's modulus 

Loading  

F = 1.;  End force 

f = 0.;  Intensity of distributed load 

 

Discretization 

n = 40;   Number of finite elements 

Solve problem 

Plot solution 

BEM-Convergence: 

Function to plot convergence of function u -> u_exact 

 


