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Abstract  
 
    Lime-based mortars were used for a construction of historic buildings and the 
present conversation practice is using this type of mortars because of their 
compatibility with the original materials. The cocciopesto mortars, containing pieces 
of crushed bricks (or other burnt clay products), were used mainly during the 
Byzantine and Roman period. These mortars exhibit quite extraordinary mechanical 
properties due to formation of C-S-H gel coating on the interface of lime and 
fragments of the crushed clay products.  
     The micromechanical approach and Mori-Tanaka homogenization of coated 
particles explain some specific features of cocciopesto mortars. The calculations 
indicate trends for different composition of mortar, porosity and size of crushed 
brick particles. The special attention is paid mainly to the influence of crushed bricks 
within the mix on the effective elastic stiffness and strength. The suggested approach 
enables an optimization of the mortar composition towards a better performance.  
 
Keywords: cocciopesto, micromechanics, Mori-Tanaka, strength estimation, C-S-H 

coating 
 
 
 
 
Abstrakt  
 
     Vápenné malty byly využívány pro konstrukci historických staveb a současná 
památková péče využívá tento typ malt kvůli jejich kompatibilitě s původními 
materiály. Malty typu cocciopesto, obsahující kousky drcených cihel (nebo jiných 
pálených produktů z keramické hlíny), byly používány zejména během byzantského 
období a ve Starověkém Římě. Tyto malty se vyznačují výjimečnými mechanickými 
vlastnostmi díky formaci tenké vrstvy C-S-H gelu na povrchu drcených cihel. 
     Mikromechanický přístup a homogenizace technikou Mori-Tanaka, 
modifikovanou pro částice potažené tenkou vrstvou, vysvětlují některé specifické 
vlastnosti malt typu cocciopesto. Výpočty naznačují trendy pro různé složení malty, 
porositu a velikost drcených cihel. Zvláštní pozornost je věnována zejména vlivu 
drcených cihel ve směsi na efektivní elastickou tuhost a pevnost. Navrhovaný 
přístup umožňuje optimalizaci směsi směrem k lepším mechanickým vlastnostem.  
 
Klíčová slova: cocciopesto, mikromechanika, Mori-Tanaka, odhad pevnosti, vrstva  

C-S-H 
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INTRODUCTION  8 

Introduction 

     The present conservation practice uses air lime or hydraulic lime mortars, because 
these are compatible with the original materials. The use of air lime presents 
problems with slow setting, inability to harden under water, lack of durability and 
poor mechanical strength. Therefore, the hydraulic lime-pozzolan mortars were 
widely used in the past and are still used nowadays for repair. These mortars are of 
higher porosity and lower strength than cement-based mortars, but they exhibit 
better durability. 
     Phoenicians were probably the first ones who added crushed clay products, such 
as burnt bricks, tiles or pieces of pottery, to the lime mortar in order to increase its 
durability and strength. Romans used this type of mortar in areas where other 
natural pozzolans were not available and called such material “cocciopesto”. The 
structures, mainly from the Byzantine period, have also very thick joints, often 
comparable to the size of bricks. Together with the enhanced mechanical properties 
of the cocciopesto mortar, the use of the thick joints probably results in the increased 
resistance to earthquake loading, since the non-linear behavior of the mortar allows 
for better energy dissipation. 
     By closer investigation, it was found that the mortars containing crushed clay 
products exhibit a hydraulic character due to formation of C-S-H gel on the lime-
brick interface. This component is responsible for some extraordinary properties of 
portland cement concrete and also the positive features of the lime-crushed brick 
mortars can be attributed to the high strength and quite stiffness of the C-S-H gel 
coating.  
     The development of the micromechanical model was inspired by other works, 
such as [1], using similar techniques for an estimation of material properties of 
concrete or cement-based mortars. In particular, the Mori-Tanaka method, modified 
for the homogenization of coated particles, was chosen for the calculation of the 
effective mortar stiffness and strength estimation. Even thought these models are not 
expected to provide exact values, they should be able to predict the trends and 
therefore provide an explanation for the characteristic properties of the mortars 
containing crushed clay products. 
     The first part of this work provides a theoretical background of the 
micromechanical homogenization. In particular, the governing equations of linear 
elasticity, decomposition of stress and strain tensors to volumetric and deviatoric 
parts, stiffness homogenization of uncoated and coated particles and strength 
estimation are briefly explained. In the second part, the reader is introduced to the 
issue of cocciopesto mortars and the influence of individual components, mortar 
porosity and size of crushed brick particles is investigated. All the calculations 
presented in this work were done using the MATLAB software. 
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Goals 

     The main goal of this diploma thesis is to investigate the behavior of historic 
cocciopesto mortars. In particular, the main goals of the thesis are to: 
 

 study the issues of mortars with crushed bricks 

 study the influence of the C-S-H gel formation on the brick-matrix interface 

 study the homogenization techniques and their theoretical background 

 study the techniques for strength estimation 

 create a reliable program for homogenization and strength estimation 

 decide the appropriate composition of investigated mortar 

 investigate the influence of individual constituents and C-S-H gel formation 
on the effective mortar stiffness, with an emphasis on the influence of crushed 
bricks in the mix 

 investigate the influence of individual constituents and C-S-H gel formation 
on the mortar strength 

 interpret the results and explain of the specific behavior of cocciopesto 
mortars 



 

PART I: 

THEORETICAL 

BACKGROUND 
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1 Elasticity Equations 

     The governing equations of elasticity involve displacement, strain and stress 
fields, and they are valid if the structure undergoes only small deformations and the 
material behaves in a linearly elastic manner. Scheme of the overall system appears 
summarized in Fig. 1.1. 
 

 
 
Fig. 1.1: Diagram of kinematic and static equations 

1.1 Stress-to-Displacement Relations 

1.1.1 Displacements 

     The displacements of the points within an elastic body are is described by three 
components (u, v, w) or (u1, u2, u3), all of them dependent on the position in the 
Cartesian coordinate system (x, y, z) or (x1, x2, x3). In a matrix notation, the 
displacements are arranged in a vector as follows: 
 

 
 
 
 











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while in the index notation, the field of displacements can be described as 
 

 
3,2,1
3,2,1




j
i

xu ji        (1.02) 
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1.1.2 Strains 

     Strains describe the deformation of the body. At a point, the stretching, e.g. in the 
x-direction, can be seen as the differential displacement per unit length. The x-
component of strain is then 
 

 
x
u

x
zyxu

xx 










,,lim
0

  (1.03) 

 
therefore, the normal strain can be understood as a displacement gradient. The 
distortion of the material, which can be described as the change in originally right 
angles, is the sum of tilts imparted to vertical and horizontal lines (also called 
engineering strain): 
 

y
u

x
v

xy 






 2121 tantan   (1.04) 

 
     For other displacement gradients εy, εz and distortions γyz, γzx the same reasoning 
can be applied with cyclic change of coordinates x → y → z → x and displacements  
u → v → w → u.  
     The strain is a second order tensor and therefore the components can be arranged 
as follows: 
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where, in the tensorial notation, shear strains (distortions) are halves of the 
engineering strains. The difference between vectors (first order tensors) and second 
order tensors shows up in how they transform with respect to coordinate rotations.  
     The index notation provides a compact description of all the components of three-
dimensional states of strain: 
 

 ijji
i

j

j

i
ij uu

x
u

x
u

,,2
1

2
1









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


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

  (1.06) 

 
where the comma denotes differentiation with respect to the following spatial 
variable (partial derivative). This double-subscript index notation leads naturally to a 
matrix arrangement of the strain components, in which the i-j component of the 
strain becomes the matrix element in the ith row and the jth column: 



ELASTICITY EQUATIONS   13 
 

 
















































































































































3

3

2

3

3

2

3

1

1

3

2

3

3

2

2

2

1

2

2

1

1

3

3

1

1

2

2

1

1

1

333231

232221

131211

2
1

2
1

2
1

2
1

2
1

2
1

x
u

x
u

x
u

x
u

x
u

x
u

x
u

x
u

x
u

x
u

x
u

x
u

x
u

x
u

x
u





ε  (1.07) 

 
Since the strain tensor is symmetric, i.e. εij = εji, there are six rather than nine 
independent strains, as might have been expected [2].  
     Sometimes it is convenient to arrange the strain components in a vector, or rather 
pseudovector. Strain is actually a 2nd order tensor, like stress or moment of inertia, 
and has mathematical properties very different from those of vectors, which must be 
taken into account while transforming or calculating the norm of strain. The ordering 
of the elements in the pseudovector is arbitrary, but it is conventional to list them in 
order (1, 1), (2, 2), (3, 3), (2, 3), (1, 3), (1, 2) [2]. This arrangement yields so-called Voigt 
notation. 
     Following the rules of a matrix multiplication, the strain pseudovector can also be 
written in terms of the displacement vector and proper operator. The strain-
displacement relationship can be expressed as 
 

uε   (1.08) 
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In so-called Mandel notation, the components of strain are arranged in the 
pseudovector and the shear components of strain tensor are multiplied by √2 as 
follows: 
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 (1.09) 

 
Such arrangement brings simplifications to many operations. 
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1.2 Static Equations 
     The force equilibrium on an infinitesimal cube results in the following equations 
(Cauchy’s equations): 
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where bi are body forces, such as gravity. These equations can be written using the 
index notation as 
 

0,  ijij b  (1.11) 
 
In a pseudovector-matrix form we can write 
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From the moment equilibrium on the infinitesimal cube, we get: 
 

yxxy

xzzx

zyyz








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 (1.13) 

 
due to this fact the stress tensor, here in the matrix representation, 
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is also symmetric. The element in the ith row and the jth column of this matrix is the 
stress on the ith face in the jth direction. 
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     Equilibrium of the stress and surface traction on the boundary can be expressed 
by Cauchy’s formula. It requests the equilibrium of the external traction forces with 
internal stress. The traction t is associated with any plane with normal n. It is a stress 
on the surface of the body 
 

AA 





Ft
0

lim  (1.15) 

 
where the externally applied force F comprises of components in direction of 
coordinates. Therefore, the traction t is completely defined by three traction vectors 
associated with coordinate planes, for instance  
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
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xz
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generally, for an arbitrary normal plane n it holds that 
 

z
z

y
y

x
x nnn )()()()( tttt n   (1.17) 

 
which can be written in compact form as 
 

nσt   (1.18) 
 
and in the index notation as 
 

iij
n

j nt )(  (1.19) 
 
where ni is a multiple of the cosine angle between the investigated plane and 
coordinate system (it is a projection onto the coordinate axes). 

1.2.1 Principal Stress 

     To find the stress on the plane where the corresponding traction vector is 
perpendicular to it and shear stresses vanish we put 
 

nnσ σ  (1.20) 
 
where the stress on the right hand side of the equation is so called principal stress. 
The equation can be expressed as 
 

  0 nIσ σ  (1.21) 
 
where I is the identity matrix. A non-trivial solution is obtained if 
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  0det  Iσ σ  (1.22) 

 
Calculation of the determinant leads to the following characteristic equation: 
 

032
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1
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where I1, I2, I3 are so called invariants of the stress tensor (their values remain the 
same whatever the rotation of the coordinate system is). The first invariant is 
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the second one can be calculated as 
 





























yyx

xyx

zzx

xzx

zzy

yzyI









detdetdet2  (1.25) 

 
Finally, the third stress invariant can be expressed as 
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
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I
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

det3  (1.26) 

 
     The same reasoning is used for calculation of the principal strain calculation and 
strain tensor invariants. 

1.3 Constitutive Relations 
     The previous sections deal only with the kinematics (geometry) and static 
equilibrium of the body; however, they do not provide insight on the role of the 
material itself. The kinematic equations relate strains to displacement gradients, and 
the equilibrium equations relate stress to the applied tractions on loaded boundaries 
and also provide the relations among stress gradients within the material. Six more 
equations, relating the stresses to strains are needed, and these are provided by the 
material’s constitutive relations. In this section, isotropic elastic materials are dealt 
with [2].  
     In the general case of a linear relation between components of the strain and stress 
tensors, we might propose a statement of the form: 
 

 t
klklijklij L    (1.27) 

 
where Lijkl is a 4th order tensor and εtkl  is the initial (or eigen / stress-free) strain. 
Because indices kl do not appear in the equation after summation, they are called 
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“dummy indices”. Previous expression constitutes a sequence of nine equations, 
since each component of σij is a linear combination of all the components of εkl. For 
instance 
 

33233312231211231123 ...  LLL   (1.28) 
 
Based on each of the indices of Lijkl taking on values from 1 to 3, we might expect 81 
independent components in L. However, both the stress tensor and the strain tensor 
are symmetric (σij = σji and εij = εji), we must also have Lijkl = Lijlk and  
Lijkl = Ljikl. These relations are called minor symmetries. The major symmetry of the 
stiffness tensor is expressed as Lijkl = Lklij. This reduces the number of L components 
to 36, as can be seen from a linear relation between the pseudovector forms of the 
strain and stress [2]: 
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 (1.29) 

 
or, using the Mandel notation: 
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 (1.30) 

 
It can be shown that the L matrix in this form is also symmetric and therefore it 
contains only 21 independent elements.  
     If the material exhibits symmetry in its elastic response, the number of 
independent elements in the L matrix can be further reduced. In the simplest case of 
an isotropic material, having the same stiffness in all directions, only two elements 
are independent – for example Young’s modulus (E) and Poisson’s ratio (ν). From 
these, so-called shear modulus can be calculated: 
 

 
12
EG  (1.31) 

 
     If a body is loaded by the stress σx, the resulting deformation εx = σx /E and the 
other normal components of strain are εy = εz = -νεx = -νσx /E. In the general stress-
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state, the other normal strain components are derived analogically (however, the 
material must be isotropic): 
 

 zyxx E
 

1  (1.32) 

 

 zyxy E
 

1  (1.33) 

 

 zyxz E
 

1  (1.34) 

 
In case of isotropic material, each shear deformation is proportional to the 
corresponding shear stress with the constant of proportionality 1/G: 
 

 
xy

xy
xy EG








12  (1.35) 

 
 

xz
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xz EG








12  (1.36) 

 
 

yz
yz

yz EG








12  (1.37) 

 
The six above equations can be written in the matrix form (using the Mandel notation 
and therefore with the last 3 diagonal terms divided by 2) as 
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1  (1.38) 

 
which can be written in compact form as 
 

σMε   (1.39) 
 
where M is the elastic compliance matrix. By inversion, we get the generalized 
Hook’s law: 
 

  εLεMσ  1  (1.40) 
 
where 
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is the elastic stiffness matrix of an isotropic material (using the Mandel notation and 
therefore with the last 3 diagonal terms multiplied by 2). 
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2 Hydrostatic and Deviatoric Components 

2.1 Hydrostatic and Deviatoric Stresses 

     A state of hydrostatic compression is the one in which no shear stresses exist and 
where all the normal stresses are equal. For this stress state it is obviously true that 
 

 kkm 



3
1

3
332211 


  (2.01) 

 
This quantity (so called mean stress) is one third of invariant I1 (so called hydrostatic 
or volumetric stress), which is a reflection of hydrostatic pressure being the same in 
all directions, not varying with axis rotations. 
     The stress tensor is then composed of the hydrostatic part and the deviatoric part: 
 

ijijkkij s 
3
1  (2.02) 

 
where the symbol δij is the Kronecker delta, which is defined as 
 









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ij  if    
 if    

0
1

  (2.03) 

 
The hydrostatic stress-state is defined as follows: 
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and the deviatoric stress state is then 
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s  (2.05) 

   
     The hydrostatic (volumetric) stress is related to the change of volume of a material 
during deformation, while the deviatoric part is responsible for the distortion. This 
concept is also convenient because the material responds to these stress components 
in very different ways. For instance, plastic and viscous behavior is caused 
dominantly by the distortional components, with the hydrostatic component causing 
only an elastic deformation [2]. 
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     The graphical representation of the stress tensor decomposition is shown in the 
following figure: 
 

 
 
Fig. 2.1: Decomposition of stress in hydrostatic and deviatoric part 

2.2 Hydrostatic and Deviatoric Strains 
     In cubical element, originally of volume abc, subjected to normal strains in all 
three directions, the change in the element’s volume is 
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where products of strains are neglected. The volumetric strain is therefore the sum of 
the diagonal elements in the strain tensor (also called trace of the matrix, or Tr(ε)). In 
the index notation, this can be written simply as 
 

kkV V
V

 


  (2.07) 

 
Similarly to mean stress σm, the mean strain is calculated as 
 

kkm 



3
1

3
332211 


  (2.08) 

 
and the strain tensor is then composed of the hydrostatic and deviatoric part: 
 

ijijkkij e 
3
1  (2.09) 

 
The hydrostatic strain is defined as follows: 
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and the deviatoric part is obtained by subtraction of εm from the diagonal terms from 
the strain tensor: 
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2.3 Constitutive Relations 
     Since εV is a relative change of volume, it must be independent of the coordinate 
system (therefore, it is so called invariant). The relation between volumetric strain 
and mean stress can be derived as follows: 
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 (2.12) 

 
where 
 

 213 


EK  (2.13) 

 
is so called bulk modulus. The bulk modulus is the stiffness parameter that connects 
the mean hydrostatic stress σm with the volumetric strain εV. Note that as ν → 0,5,  
K → ∞. That is, the material becomes infinitely stiff as Poison’s ratio approaches 0,5. 
Values of Poisson’s ratio greater than 0,5 are not possible since such values imply 
that a tensile hydrostatic stress would cause a volumetric contraction. The volumetric 
change is proportional to the mean stress only in case of an isotropic material.  
     The normal component of the deviatoric deformation ex can be expressed as 
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 (2.14) 
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and since  
 

     
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 (2.15) 

 
the sum of the deviatoric normal components is equal to zero. Therefore  
 

zyx sss    (2.16) 
 
and  
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ss
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ss
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e x
xxxx 2
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  (2.17) 

 
The same relation holds for the other normal components of the deviatoric strain 
tensor as well. The shear strain components are (as mentioned before) related to the 
shear stress by the shear modulus G without factor 2. For instance the first shear 
component: 
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xy
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
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

12  (2.18) 

2.3.1 Index Notation, Lamé’s Constants 

     For the diagonal terms in the strain tensor, for instance the strain ε11, the strain-
stress relationship can be expressed as 
 

     3322111133221111
1111  




EEEE
 (2.19) 

 
which can be, using the index notation, for all normal strains expressed as 
 

  ji
EE kkijij 


 if 1  (2.20) 

 
For the shear components of the stress tensor, for instance the strain ε12, the strain-
stress relationship can be expressed as 
 

 
1212

1 
E


  (2.21) 

 
which can be, using the index notation, for all shear strains expressed as 
 

  ji
E ijij 


 if 1  (2.22) 
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The previous equations (for normal and shear strains) can be written in a single 
expression by making use of the Kronecker delta: 
 

 
ijkkijij EE

 



1  (2.23) 

 
     The required form of the stress-strain relationship (dependence of stress on 
strains), using so-called Lamé’s constants μ and λ has a form: 
 

kkijijij   2  (2.24) 
 
In order to establish the relationship between Lamé’s constants, Young’s modulus 
and Poisson’s ratio, it is necessary to compare the two forms of the constitutive 
equations for an isotropic elastic material with the previous equation. However, in 
order to make that comparison, the equations for strain-stress relationship must be 
inverted, because the previous equation expresses the stress components in terms of 
the strain components. 
     By simple arrangement, the following equation can be obtained: 
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and since we know that 
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where the σkk can be then substituted as follows: 
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Therefore, the Lamé’s constants can be expressed as 
 

 
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EG  (2.28) 

 
and 
 

   GKE
3
2

211








  (2.29) 

 
in terms of E, ν, K and G. 



HYDROSTATIC AND DISTORTIONAL COMPONENTS  25 
 

2.3.2 Tensorial Notation 

     In tensorial notation, there is needed the use of the unit fourth-order tensor, Iijkl , 
with components: 
 

jlikijklI   (2.30) 
 
with Kronecker delta being called the unit second-order tensor. This tensor exhibits 
major symmetry but not minor symmetry, and it has the important property that I : ε 
= ε : I = ε for any second-order tensor ε [3].  
     Sometimes it is useful to work with the symmetrized unit fourth-order tensor, IS, 
which has components: 
 

 
2

jkiljlikS
ijklI

 
  (2.31) 

 
This tensor exhibits minor and major symmetry but the identity I : ε = ε : I = ε holds 
only if the second-order tensor ε is symmetric [3]. 
     The stiffness tensor in linear isotropic elasticity is expressed as 
 

Se IδδL  2  (2.32) 
 
or in index notation as 
 

 jkiljlikjlik
e
ijkl  L  (2.33) 

 
Using the tensorial notation, the generalized Hooke’s law can be presented as 
 

εδεIεδδεLσ  23:2::  VSe ε  (2.34) 
 
where 
 

εδ :
3
1

Vε  (2.35) 

 
is one third of the trace of the strain tensor, representing the relative change of 
volume. The volumetric part of the strain tensor is εVδ, and when we subtract it from 
the strain tensor, we obtain the deviatoric strain [3]: 
 

εIεδδIεδδεδεe ::
3
1:

3
1

DSVε 





   (2.36) 

 
Therefore the deviatoric projection tensor is 
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δδII 
3
1

SD  (2.37) 

 
and the volumetric projection tensor is 
 

δδI 
3
1

V  (2.38) 

 
Then the volumetric-deviatoric decomposition of the strain tensor can be done as 
follows [3]: 
 

  eδεεεIεIεIIεIε  VdevvolDVDVS ε::::  (2.39) 
 
And the stress tensor can be decomposed in the same way: 
 

  sδσσσIσIσIIσIσ  VdevvolDVDVS σ::::  (2.40) 
 
where 
 

σδσI :
3
1:  VVσ  (2.41) 

 
is the mean stress and 
 

δσσIs VD σ :  (2.42) 
 
is the stress deviator.  
     The elastic stiffness tensor can also be decomposed into its volumetric and 
deviatoric part. Realizing that  
 

VIδδ 3  (2.43) 
 
we can rewrite the stiffness tensor in linear isotropic elasticity as 
 

 
  DVDV

DVVSe

GK IIII
IIIIδδL

23223
232





  (2.44) 

 
because the coefficient (3λ + 2μ) is recognized as three times bulk modulus K and μ = 
G = shear modulus. The generalized Hooke’s law [3]: 
 

  eδεIεIεIIεLσ GεKGKGK VDVDVe 23:2:3:23:   (2.45) 
 
is split into the volumetric and deviatoric part: 
 

es GεK VV 23  and  (2.46) 
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2.3.3 Engineering Notation 

     While the tensorial notation is useful in theoretical derivations, for developing a 
numerical algorithm that should be implemented into a computer code, it is more 
convenient to store the stress and strain components in one-dimensional arrays 
(pseudovectors) and stiffness moduli in matrices [3]. 
    The normal components are usually arranged in a natural order, i.e. σx followed by 
σy and σz. For the shear components, it is possible to use order, but the selected 
convention must be used throughout the entire project [3]. One possibility is to set 
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The engineering shear component γxy is twice the tensorial shear strain because then 
the energy product  
 

ijijεσ :  (2.48) 
 
can be simply replaced in the engineering notation by a simple scalar product of 
column vectors, σTε.  
     However, the double contraction in evaluation of the tensorial norm defined as 
 

σσσ :
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 (2.49) 
 
resulting in 
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is equal to the pseudovector multiplication 
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only if we multiply the shear components in the pseudovector by the factor of √2 
(Mandel notation). Otherwise (using the Voigt notation) the diagonal scaling matrix 
has to be inserted: 
 

σPσσ T


 (2.52) 
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where the scaling matrix P has the following form: 
 

 222111diagP  (2.53) 
 
Such scaling matrix leaves the normal components as they are and doubles the shear 
components. 
     When calculating the norm of the strain tensor, using the Voigt notation, it is also 
necessary to insert a scaling matrix, but not the same one as for two stress-like 
tensors. Since the shear components have already been doubled, the corresponding 
scaling factors are now 0.5 instead of 2. Therefore, it turns out that the appropriate 
scaling matrix is the inverse of P and the tensorial norm of ε is in the engineering 
notation evaluated as 
 

 5.05.05.011111 diagwhere   PεPεε T


 (2.54) 
 
However, if the Mandel notation is used, the scaling matrix equals to 1. 
     For the purpose of the volumetric-deviatoric decomposition, the engineering 
counterpart of the unit second-order tensor (Kronecker delta) is established as 
 

 T000111δ  (2.55) 
 
The volumetric-deviatoric decomposition is in the engineering notation based on 
projection matrices 
 

T
V δδI

3
1

  (2.56) 

 
and 
 

T
VD δδIIII

3
1

  (2.57) 

 
with I representing the identity matrix. Using the Mandel notation, the elastic 
stiffness matrix can be simply expressed by means of the volumetric and deviatoric 
projection matrices as follows: 
 

DVe GK IIL 23   (2.58) 
 
The generalized Hook’s law 
 

  εIIσ DV GK 23   (2.59) 
 
can be then split into the volumetric and deviatoric part: 
 

es GεK VV 23  and  (2.60)
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3 Stiffness Homogenization 

     Many materials are inhomogeneous, i.e., they consist of dissimilar constituents 
(phases) that are distinguishable at some small length scale. The behavior of 
inhomogeneous materials is determined, on the one hand, by the relevant materials 
properties of the constituents and, on the other hand, by their geometry and topology 
(phase arrangement) [5].  
     Defects in an elastic material give rise to inhomogeneous stress and strain fields 
by which the defects can be characterized. Equivalence between an inhomogeneous 
material and some homogeneous material with a certain eigenstrain or eigenstress 
distribution can be established [5]. 

3.1 Eigenstrain 
     Since the eigenstrain is not caused by stress, eigenstrains are also referred to as 
stress-free transformation strains (superscript t). Formally, all kinds of strain, which 
may prevail in a material in the absence of stress, can be interpreted as eigenstrains; 
typical examples are thermal or plastic strains. In the framework of infinitesimal 
deformations the total strains εij are the sum of elastic strains εeij = Mijkl σkl and the 
eigenstrains: εij = εeij + εtij. The stress-strain relationship is then [4] 
 

 t
klklijklij L    (3.01) 

3.1.1 Inclusions 

     The phase transformation in solids, where atomic rearrangements change the 
geometry of the lattice, gives rise to spatial distribution of eigenstrain εtij(x). 
     If nonvanishing eigenstrains prevail, only in some bounded subregion Ω of the 
homogeneous material, this region is called an inclusion and the surrounding 
material is called a matrix. It has to be emphasized that the elastic properties of an 
inclusion and the matrix are the same; otherwise the region Ω would be called an 
inhomogeneity [4].  

3.1.2 Eshelby’s Solution 

     Probably J.D. Eshelby (1916-1981) has found the most important analytical 
solution of micromechanics. It is valid for an unbounded domain which contains an 
ellipsoidal inclusion Ω(r) with principal axes ai. 
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Fig. 3.1: Ellipsoidal inclusion in an unbounded domain 
 
 
     If the eigenstrains in the inclusion are constant (εtij = const.) then the remarkable 
result holds that the total strains εij inside the inclusion are constant as well. Via 
fourth-order Eshelby’s tensor Sijkl they depend linearly on the eigenstrains [4]: 
 

)(rt
klijklij constS Ω in   (3.02) 

 
     The Eshelby’s tensor is symmetric in the first and second pair of indices, but in 
general it is not, symmetric with regard to an exchange of these pairs (exhibits the 
minor but not the major symmetry) [4]: 
 

klijijklijlkjilkijkl SSSSS  ,  (3.03) 
 
In case of an isotropic material, its components depend only on Poisson’s ratio ν, the 
ratios of the principal axes ai, and their orientation with respect to some Cartesian 
coordinate system. The respective expressions are very long and can be found in 
literature (e.g., Mura, 1982; Kachanov et al., 2003). 
     The solution by Eshelby (1957) holds for an arbitrary anisotropic material. Yet, 
only in case of an isotropic material is a closed-form representation of the tensor Sijkl, 
and the fields outside the inclusion, possible. The Eshelby solution for ellipsoidal 
inclusions is of fundamental importance for analytical homogenization techniques. 
     Starting from the general ellipsoid various special cases can be derived. For 
instance, the two-dimensional solution for an infinitely long cylinder of elliptic cross 
section in plane strain is obtained from the limit process a3 → ∞ [4]. 
     For a spherical inclusion (ai = a) in an isotropic material the dependence on the 
principal axes and their orientation vanishes (geometric isotropy) and the Eshelby 
tensor reduces to [4] 
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are scalar parameters. The superscript (0) stands for the matrix and (r) is later used 
for a representation of other components (inhomogeneities). The entire (i.e., elastic 
and geometric) isotropy of the problem then allows the decomposition into 
volumetric and deviatoric strain, which highlights the meaning of the parameters α 
and β [4]: 
 

)(rt
ijij

t
kkkk Ω inand    (3.06) 

 
Therefore the fourth rank Eshelby tensor turns out to be isotropic when the shape of 
the inclusion is spherical and can be characterized by α and β (representing the 
hydrostatic and the deviatoric parts of the constraint, respectively).  

3.2 Inhomogeneities 

     The second class of defects, which instead of eigenstrains in a homogeneous 
material are characterized by inhomogeneous, i.e., spatially varying, material 
properties are called inhomogeneities. We first describe these defects by an 
equivalent eigenstrain in some homogeneous comparison material in order to then 
apply again Eshelby’s result [4].  
     This strategy involves replacing an actual perfectly bounded inhomogeneity 
(superscript (i)), subjected to the eigenstrain εt, with an equivalent (fictitious) 
homogeneous inclusion (superscript (m)) with the equivalent eigenstrain ετ. This 
equivalent eigenstrain must be chosen in such a way, that the inhomogeneity and the 
equivalent homogeneous inclusion attain the same stress state σ(i) and the same 
constrained strain εc (Eshelby, 1957). 
     When σ(i) is expressed in terms of the elastic strain in the inhomogeneity, the 
following equality holds: 
 

   εεLεεLσ  cmtcii :: )()()(   (3.07) 
 

Here, the differences εc - εt and εc - ε τ are the elastic strains in the inhomogeneity and 
the equivalent homogeneous inclusion, respectively. We can express the constrained 
strain using the Eshelby tensor as εc = Sε τ. Hence, the equation for the stress σ(i) can 
be also written as [5] 
 

     εISLεεSLσ :::: )()()(  mtii   (3.08) 
 
where I is the symmetric fourth-order unit tensor, which turns out to be the identity 
matrix in the Mandel notation. 
     By simple manipulation with the equation for σ(i), we can express the equivalent 
eigenstrain as a function of the stress-free eigenstrain εt in the real inclusion as 
 

   timmi εLLSLLε ::: )(1)()()(    (3.09) 
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This, in turn, allows the stress in the inhomogeneity, σ(i), to be expressed as 
 

     timmimi εLLSLLISLσ ::::: )(1)()()()()(    (3.10) 
 
If a perfectly bonded inhomogeneity in an infinite matrix is subjected to a uniform 
mechanical strain εa or external stress σa, the strain in the inclusion is a superposition 
of the applied strain and of the term εc that accounts for the constraint effects of the 
surrounding matrix. The stress in the inhomogeneity is after such loading [5]: 
 

   εεεLεεLσ  camcaii :: )()()(   (3.11) 
 
corresponding to the strain 
 

εSεεεε :)(  acai   (3.12) 
 
On the basis of these relationships the strain in the inhomogeneity can be expressed 
as 
 

   amimi εLLMSIε ::: 1)()()()( 
   (3.13) 

 
And since the strain in the inhomogeneity is homogeneous (piecewise constant),  
ε(i) = <ε(i)> = E(i), the strain concentration factor according to Hill (1965), describing 
the relation between the strain inside the inhomogeneity and the external load,  for 
dilute inhomogeneities is 
 

   1)()()()( ::


 mimi
dil LLMSIA   (3.14) 

 
By setting <ε(i)> = L(i)<σ(i)> and using εa = M(m)σa, the dilute stress concentration factor 
can be found from the previous equation as [5] 
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     It is convenient to change the superscripts m and i, used for the derivation of the 
dilute concentration factors, to 0 representing the matrix and r representing the 
inhomogeneities. Such notation allows for the homogenization of more than one 
inhomogeneity embedded in the matrix.  
     The total strain inside the inhomogeneity Ω(r) as a function of the external load ε0 
(or equal macroscopic strain E) is then 
 

          ΕAΕLLMSIΕ :::: )(100 rrr    (3.16) 
 
where E(r) is the strain in the rth phase, and if r attains the value 0, we get the strain in 
the matrix. The previous equation can be written using the index notation as 
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   
kl

r
ijkl

r
ij A   (3.17) 

 
     The total stress inside the inhomogeneity Ω(r) as a function of the external load σ0 
(or equal macroscopic stress Σ) is 
 

          ΣBΣLLMSIΣ :::: )(00 rrr   (3.18) 
 
which can be written in the index notation as 
 

   
kl

r
ijkl

r
ij B   (3.19) 

 
where the fourth-order tensor B is the stress concentration factor (also called a stress 
influence tensor). 

3.3 Effective Elastic Properties 

     A macroscopically homogeneous material may have a heterogeneous 
microstructure at the microscopic level. Under certain conditions, the material can be 
described at the macroscopic level as homogeneous with spatially constant effective 
properties. This means that the microstructure is averaged; this micro-to-macro 
transition is called homogenization [5]. 
     The suitable volume for homogenization is called “representative volume 
element” (RVE). The representative volume element must be big enough to include 
enough non-homogeneities of materials (statistically homogeneous distribution of 
the defects or heterogeneities), but small enough to have the stresses and strains 
within RVE uniform (size with respect to the analyzed detail of a structure). 

3.3.1 Averaging 

     The macro-stresses and macro-strains, which characterize the mechanical state of 
the macroscopic material point, are defined as the volumetric averages of the 
microscopic fields: 
 

 


 xx dijijij  1  (3.20) 

 
for effective (average) stress in the volume Ω. Employing the divergence theorem 
(also known as the Gauss theorem, the Green theorem or per-partes integration in 
more dimensions) the macroscopic stress can also be expressed using integrals over 
the boundary ∂Ω (curve integrals) of the averaging domain Ω [4]: 
 

 


 Axt jiij d1  (3.21) 
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The macro-strains are calculated as 
 

 


 xx dijijij  1  (3.22) 

 
which can be also expressed as [4] 
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     Often a volume Ω of a heterogeneous material consists of n subdomains and a 
matrix with volume fractions  
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where r = 0 is used for the matrix itself. Obviously then 
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where the elastic properties L(r) are piecewise constant. In case of such 
microstructure, consisting of discrete phases, we have 
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and analogously for the strains, it holds that 
 

  )(

0

r
ij

n

r

r
ij c  



 (3.28) 

 
which means that the total stress (or strain) is the sum of phase stress (or strain) with 
the weight c(r). 
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3.3.2 Effective Elastic Constants 

     Analogous to the elasticity law on the microscopic level, the effective stiffness 
tensor is defined by the linear relation between the macro-stresses and macro-strains: 
 

kl
eff
ijklij L   (3.29) 

 
The interpretation of the effective stiffness tensor as a material property is subjected 
to several conditions. It is, for instance, the equality of the average strain energy 
density <U> in the volume Ω when expressed by means of the microscopic and 
macroscopic quantities [4]: 
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This requirement, known as the Hill condition (Hill, 1963), can also be written in the 
form 
 

ijijijij    (3.31) 
 
     The relation between the applied (macroscopic) strains and stresses can be 
expressed as 
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Therefore, the effective stiffness matrix (in the matrix notation) is calculated as 
follows: 
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Analogously, the compliance matrix can be calculated as 
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It can be proved that  
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where I is the identity matrix, A and B are strain and stress concentration tensors, 
respectively. For a matrix with only one type of inhomogeneity, the combination of 
the previous equations results in the following expression: 
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 (3.36) 

 
where the quantities with the superscript (0) represent a matrix and the quantities 
with the superscript (1) represent an inhomogeneity (also called reinforcement or 
defect). Using the same reasoning for the different boundary conditions (loading by 
the external load σ0) and for one type of inhomogeneity, the stiffness tensor can be 
derived as 
 

     1)0()1()0(0)1( : 
 BMMML ceff  (3.37) 

3.3.3 Voigt and Reuss Approximation 

     In a homogeneous material, the boundary conditions lead to homogeneous 
(spatially constant) stress and strain fields. The first possibility are prescribed linear 
displacements ui = εij0 xj and therefore ε0 = const = E. The second possibility is loading 
by uniform tractions ti = σij0 nj where σ0 = const = Σ. 
     In case of a heterogeneous material, the simplest approximation is to assume the 
micro-fields to be constant, in accordance with the boundary conditions [4]. 
     These approximations are exact only in one-dimensional special cases of different 
materials arranged “in parallel” (Voigt) or “in series” (Reuss). Despite obvious 
deficiencies, the simple approximations by Voigt and Reuss bear the advantage that 
they yield exact bounds for the true effective elastic constants of a heterogeneous 
material. It can be shown that [4] 
 

effeffeff KKK VoigtReuss   (3.38) 
 
and 
 

effeffeff GGG VoigtReuss   (3.39) 

3.3.3.1 Voigt Approximation 

    If according to Voigt (1889) the strains inside a volume Ω of a heterogeneous body 
are taken to be constant (ε(r) = E = const), it is obvious that the influence tensor is for 
Voigt approximation is A = 1. The effective stiffness matrix (or tensor) is then 
approximated as follows: 
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In the special case of discrete phases of an isotropic material the above 
approximation leads to the effective bulk modulus 
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and shear modulus 
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However, if one of the phases is rigid (e.g., L(1) → ∞) one obtains Leff → ∞ from the 
Voigt approximation. 

3.3.3.2 Reuss Approximation 

    Analogously, a constant stress field is assumed in the approximation according to 
Reuss (1929) (σ(r) = Σ = const), which corresponds to B = 1. The effective compliance 
matrix (or tensor) is then approximated as follows [4]: 
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In the special case of discrete phases of an isotropic material the above 
approximation leads to the effective bulk modulus 
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and shear modulus 
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However, in case of a matrix containing cavities or cracks the vanishing stiffness 
(e.g., L(1) → 0), leads to Leff → 0. 

3.3.4 Dilute (Non-Interacting) Defect Distribution 

     The simplest situation for modeling is when the inhomogeneities or defects are so 
dilutely distributed in the homogeneous matrix that their interaction among each 
other and with the boundary of the RVE can be neglected (“dilute distribution”) [4]. 
     As illustrated in Fig. 3.3, each inhomogeneity can be considered in an unbounded 
domain, subjected to a uniform far-field loading ε0 = <ε> = E or σ0 = <σ> = Σ. The 
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characteristic dimension of the inhomogeneities therefore has to be small, compared 
to their distance or to the distance from the boundary of the RVE. Although the 
solutions obtained under these idealizations are valid only for very small volume 
fractions (c(r) << 1) they form the basis for important generalization [4]. 
 

      
 
Fig. 3.3: Model of dilute phase distribution [4] 
 
 
In case of an ellipsoidal inhomogeneity the strain inside the inhomogeneity Ω(r) is 
constant and given by the influence tensor A(r), which is calculated for each phase 
separately as 
 

          100)0( ::  LLMSIA rr
dil  (3.46) 

 
where the Eshelby tensor (or matrix in engineering notation) depends on the matrix 
material.  

3.3.5 Mori-Tanaka Model 

     The approximation of a dilute distribution of non-interacting defects is equivalent 
to the assumption that in a sufficient distance from each defect the constant strain 
field ε0 or stress field σ0 of the external loading prevails. This assumption is the 
starting point for a refinement of the model to account for an interaction of 
inhomogeneities (defects) [4]. 
 

 
 
Fig. 3.4: Interaction of inhomogeneities in the Mori-Tanaka model [4] 
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     In the Mori-Tanaka model (1973) the strain or stress field in the matrix is, in a 
sufficient distance from an inhomogeneity, approximated by the constant field  
<ε>M or the average stress <σ>M as illustrated in Fig. 3.4. 
      The loading of each phase then depends on the existence of other defects via the 
average matrix strain <ε>M = E(0) or the average matrix stress <σ>M = Σ(0). 
Fluctuations of the local fields are neglected in this approximation. 
     In the view of the idealized consideration of a single inhomogeneity in an 
unbounded matrix, subjected to effective loading <ε>M or <σ>M, the Mori-Tanaka 
model formally equals that of a dilute distribution and allows the application of the 
already known concentration tensors from the dilute distribution model, Adil(r), to 
represent the average strain in inhomogeneity [4]: 
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dil ΕAΕ rr   (3.47) 

 
In order to determine the effective material properties the average defect strain needs 
to be represented as a function of the macroscopic quantities ε0 = <ε> = E or  
σ0 = <σ> = Σ. 
     The total macroscopic strain is then 
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     For multi-phase materials consisting of a matrix (superscript 0) into which n 
inhomogeneity phases are embedded, the Mori-Tanaka models are based on the 
following relations: 
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is the Mori-Tanaka strain concentration factor. The strain in the individual 
inhomogeneities is then 
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Analogously the stress concentration factor for Mori-Tanaka method takes the form 
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and the stress in the individual inhomogeneities is 
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The effective macroscopic elastic tensor is obtained as 
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and the compliance elastic tensor as 
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     The Mori-Tanaka model, in contrast to the model of a dilute distribution, correctly 
covers the extreme cases of c(r) = 0 and c(r) = 1 (corresponding to homogeneous 
material) and therefore can formally be applied for arbitrary volume fractions c(r) [4].  
     In the special case of an isotropic matrix which contains isotropic spherical 
inhomogeneities the Mori-Tanaka model yields, irrespective of the spatial 
arrangement of the phases, an isotropic overall behavior with effective elastic 
constants. It is because the Eshelby tensor can be decomposed to its volumetric and 
deviatoric part. Using the equations (3.04), (3.51) and (3.55), which can be written in 
slightly different way, we get 
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which can be decomposed to volumetric and deviatoric components as follows: 
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where also the dilute strain concentration factor can be further decomposed as 
follows: 
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and since the volumetric and deviatoric components are independent of each other, 
the effective bulk modulus can be, after a simple manipulation with the previous two 
equations, expressed as 
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and the effective shear modulus as 
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where 
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     The Mori-Tanaka theories are based on the assumption that the shape of the 
inhomogeneities can be described by ellipsoids. In porous or cellular materials with 
high void volume fractions, the deformation at the microscale takes place due to 
bending and buckling of the cell walls (Gibson and Ashby, 1988), which implies 
changes of shapes of the voids. Such effects are not described by Mori-Tanaka 
models, which, consequently, tend to overestimate the effective stiffness of the 
cellular materials by far [5]. 
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4 Strength Homogenization 

     Due to the assumed elastic linear behavior of the RVE, all the imposed work is 
stored at each point as an elastic energy density: 
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which can be decomposed in the volumetric and deviatoric part as follows: 
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where the deviatoric part 
 

sses :
4
1:

2
1

G
WeD   (4.03) 

 
is assumed to cause the failure and it is proportional to so called second invariant of 
the stress deviator, J2, where: 
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The invariant J2 can be written using the Mandel notation as 
 

ssTJ
2
1

2   (4.05) 

4.1 Quadratic Strain Averages 

     The expression for the quadratic average of the deviatoric strain field over a 
general phase r can be derived using the Hill’s lemma 
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expressing the equality between the average strain energy density <U> in the RVE 
when expressed by means of the microscopic or macroscopic quantities [4] the 
following equation is obtained: 
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The local strain ε(x) can be then decomposed into its volumetric and deviatoric part 
(causing the failure): 
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which can be after projection of strain in each phase into its volumetric and 
deviatoric part written as 
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To extract the deviatoric part from the expression it is convenient to differentiate the 
whole equation with respect to G(r). The volumetric part after the differentiation 
vanishes and we obtain 
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and after a simple manipulation 
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the equation can be even more simplified as follows 
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The quadratic average of the deviatoric strain field over a general phase r is defined 
as [1] 
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and using the previous equations it can be also expressed as 
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The related quadratic average of the deviatoric stress field (see the expression for J2) 
is used as an estimate for deviatoric stress peaks [1]: 
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where s(x) denotes the field of the deviatoric stress tensor.  
     Assuming the elasto-brittle approach, the elastic behavior prevails until the 
quadratic deviatoric stress averages over each of the phases remain below a critical 
strength [1]: 
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5 Homogenization with Coated Particles 

     This section is devoted to the evaluation of the constraint constants for coated 
particles, relating the induced strain to the eigenstrain in individual phases, α(r) and 
β(r), and obtaining the effective elastic properties. The spherical inclusion, with a thin 
interlayer, embedded in matrix is considered for the evaluation. This is an enormous 
simplification and it is also a good model for randomly oriented inhomogeneities, 
such as particles embedded in the mortar paste. Only the formulas needed for the 
derivation of α(r) and β(r) are provided in this thesis, the theoretical background can be 
found in [16]. 
     Motivated by Eshelby’s observations, Luo and Weng [16] undertook a similar 
study to find the elastic field in the inclusion (grain) and coating, which is embedded 
in an infinitely extended matrix. They restricted their consideration to the case of a 
three-phase, spherically concentric solid.  
     The whole procedure for determination of the constraint constants, α(g) and β(g) 
representing the grain, α(c) and β(c) representing the coating and finally α(m) and β(m) 
representing the matrix, was taken from [16]. All the phases, grain, coating and 
matrix, are represented by bulk modulus K(r) and shear modulus G(r). The geometry 
is described by the radius of a grain a and radius of its coating b, as depicted in the 
following figure: 
 

 
 
Fig. 5.1: A three-phase composite spherically concentric solid 
 
The superscript g stands for the grain (or the inner inclusion), c stands for the coating 
and superscript m is used in quantities describing the surrounding matrix. 
     The parameter c is defined as c = (a / b)3 and it has a physical meaning of the 
volume fraction of particles in a two-phase composite. The hydrostatic and deviatoric 
transformation problems are treated separately.  
     The solution of Luo and Weng is based on the equation for the general 
displacement field in spherical coordinates. The integration constants are found 
using the continuity conditions and equilibrium of stresses on the interface of 
individual phases. 
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5.1 Hydrostatic Part 
     A theoretical background for obtaining the following formulas can be found in 
[16] from which only the needed expressions for constraint constants are presented 
here. The constraint constant for grain α(g) is calculated as 
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where c was defined as c = (a / b)3 and p is 
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The constrain constant for the coating of a grain is obtained as 
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5.2 Deviatoric Part 
     As in case of the hydrostatic constraint constants α(r), the derivation of the 
expressions for the deviatoric constraint constants β(r) is, together with a theoretical 
background, provided in [16]. Again, only the needed formulas are presented here. 
     The deviatoric constraint constant for the grain can be found in the form 
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and for the coating as 
 

  2

3/5

)(1
)(

1
1

215
21 b

c
cb c

c








  (5.05) 

 
where the constants a1 and a2 can be calculated as 
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and the terms b1 and b2, needed for the calculation of the deviatoric constraint 
constants of coating, can be found as 
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The individual matrices needed in the previous equations can be obtained as 
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where 
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and finally 
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5.3 Modification of Mori-Tanaka Homogenization 
     For the calculation of the effective moduli, the formulas for spherical inclusions 
developed in the chapter 3 can be used in a slightly modified form. The effective bulk 
modulus can be expressed, according to Mori-Tanaka scheme, as 
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and the effective shear modulus as 
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where the constraint constants α(r) and β(r) differ for the phases within the coated 
grain (inclusion) and those having no coating. For the grain and coating, the 
constraint constants presented in the previous sections of this chapter have to be 
used. In case of the particles without coating, the constraint constants α(r) and β(r) can 
be simply substituted by α0 and β0, which are dependent only on the Poisson’s ratio 
of the surrounding matrix, as defined in the chapter 3. 
 
 



 
 

PART II: 

CALCULATIONS 
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6 Introduction to Cocciopesto Mortars 

 
     Air lime based mortars harden through drying and carbonation of so-called slaked 
lime, Ca(OH)2, that transforms into calcite, CaCO3, in presence of atmospheric CO2. 
In hydraulic mortars, this hardening is supplemented by chemical reactions between 
calcium hydroxide and reactive silicates and aluminates in the presence of water. 
These minerals are not present in limestone in the sufficient quantities and therefore 
they must be added in form of pozzolans.  
     Hydraulic limes have more favorable properties, mainly higher strength [6]. The 
term 'hydraulic' is now used internationally to describe cements and other binders, 
which set and harden as a result of chemical reactions with water and continue to 
harden even if subsequently placed under water [7]. 
     Pozzolans are able to react with the calcium hydroxide at ambient temperature to 
form hydrated calcium silicates and develop suitable mechanical strengths. In fact, 
the pozzolan-lime reaction is also a hydraulic reaction which main hydration product 
is C-S-H gel, like in Portland cement [6]. 
     The use of mortars based on hydrated lime and brick dust dates back to the most 
ancient times. Phoenicians were probably the first ones to use mortars based on 
hydrated lime and crushed or dust bricks, followed by all other people who were in 
contact with them. The Romans used this type of mortar in every part of their 
empires whenever pozzolanic materials were not available and a mortar insoluble in 
water was needed. They certainly were ignorant of the chemistry of mortars, but they 
knew by experience that the brick dust or pebble played a very important role in the 
mortar consistency and strength. The use of crushed bricks, particularly brick dust, in 
the preparation of mortars based on putty lime has been interpreted in the present 
time as an alternative use to other pozzolanic materials [9]. 
     The specific hydraulic character of the crushed brick–lime mortar is attributed to 
the adhesion reactions occurring at the ceramic–matrix interface, on the calcium 
hydrate content of the mortar and the dimensions and type of ceramic [8].  
      
 

 
 
Fig. 6.1: Hagia Sophia mortar sample [12] 
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     Reactions between the lime and any pozzolanic material take place if the 
pozzolanic material is finely ground in order to make a large, specific surface, and 
hence a large contact between the two materials. When the joint thickness becomes 
greater than 40 mm (70 mm in case of Hagia Sophia in Istanbul), the size of the brick 
pebbles increases even up to 25 mm and the pozzolanic reaction, if any, can take 
place only along the external border of the pebble [9]. 
     Clay minerals in the clay bricks, composed mainly of silica and alumina, present a 
sharp pozzolanic activity when heated at temperatures in the range of 600–900°C and 
ground in sufficient fineness. During the thermal treatment, silica and alumina lose 
the combined water, leading to a destruction of the crystalline network. Silica and 
alumina remain in an unstable amorphous phases that could react with hydrated 
lime and water, producing pozzolanic products [10]. 
     The lime makes the interfacial surface alkaline and causes chemical reaction. The 
penetration of lime into the ceramic and the consequent reaction, transform the 
microstructure of the ceramic by reduction of pore radii [8]. 
     Mortar samples also show self-healing effects and proved to be resistant to 
continuous stresses and strains due to the above-mentioned presence of the 
amorphous hydraulic formations (C-S-H) which allows for greater energy absorption 
without initiations of fractures and explains the good performance of the historic 
composites [11], [12].  
 

 
 
Fig. 6.2: Fragment of pottery in cocciopesto with thin layer of C-S-H [15] 
 
 
     Based on the literature study, it seems that no one has ever tried to estimate the 
properties of cocciopesto mortars using micromechanical modeling. Two works [1] 
and [27] provided an inspiration for developing micromechanical models. These 
works deal with composite materials, composed of the matrix, voids and aggregates 
and exploit the method of Mori-Tanaka (Mori and Tanaka, 1973) to estimate the 
effective stiffness and strength of the composite. Even though there are many 
simplifications in these models, the results quite well correspond to the available 
experimental data and therefore they should be applicable to the mortars with 
crushed bricks as well. 
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7 Calculation without C-S-H Gel Coating 

     Based on a comprehensive literature study, e.g. [22], the mix proportions for the 
micromechanical homogenization of the cocciopesto mortar were determined as 4 
mass portions of lime matrix, 3 mass portions of crushed bricks, or other clay 
products such as ceramic tiles, and 5 mass portions of siliceous sand in the hardened 
mortar.  
     This composition should be similar to the historic mortars described by, for 
instance, Vitruvius. The crushed bricks should be responsible for the hydraulicity, 
and therefore improve the mechanical properties of the mortar, without need for the 
modern artificial substances or industrial by-products such as metakaolin or fly ash. 
 
Table 7.1: properties of individual components used for calculation 
 

 
 

     The porosity of hardened mortar is varying according to the environment and 
technology. For the calculations, the porosity was considered to be 30% of the 
volume, if not specified otherwise.  
     The mechanical properties of the individual components, considered in the 
calculations, are summarized in Table 7.1. The properties of voids are set to be non-
zero to avoid any complications during the computations. 
     The summary of material properties in Table 7.1 indicates that the “weak” 
constituent is the hardened lime matrix, having the tensile strength approximately 
0.4 MPa. This value can vary according to curing time and technology. However, the 
value should not be higher than 0.7 MPa, which is still way smaller than the tensile 
strength of the other components. 
     For the calculation of the effective (overall, macroscopic) material properties, the 
Mori-Tanaka homogenization technique was used. The representation of randomly 
oriented inhomogeneities by spherical particles was chosen, since these should 
demonstrate the trends in behavior as the best ones. 
     All the calculations presented in this work were done using software MATLAB.   
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7.1 Calculation of Effective Stiffness without C-S-H 
Gel Formation 

     The final stiffness (Young’s modulus) of the mix is strongly influenced by the 
porosity of the hardened mortar. For illustration see the following figure, where the 
dependence of the mortar stiffness and Poisson’s ratio on the porosity is depicted: 
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Fig. 7.2: Dependence of effective stiffness and Poisson’s ratio on porosity of mortar 
 
 
For the reasonable porosity of 30%, the calculated Young’s modulus of the mortar is 
Eeff = 1 621 MPa and Poisson’s ratio νeff = 0.201. These values yield the effective shear 
modulus of the mortar Geff = 675 MPa. 
     The calculated effective stiffness is within the range provided in literature. The 
stiffness of historic cocciopesto mortars varies according to their porosity and content 
of the individual constituents - the values of Young’s modulus can be lower than 
1 000 MPa (e.g. [13]) and also higher than 3 000 MPa, corresponding to the stiff 
cocciopesto mortars with high pozzolanity and low porosity (e.g. [14]).  
     The stiffness of the mix is decreasing with the increasing content of crushed 
bricks. The variable parameter a (brick content) has a meaning of the mass portion in 
the mix (lime : brick : sand = 4 : a : 5). The calculated trend is shown in the following 
figure: 
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Fig. 7.3: Dependence of macroscopic mortar stiffness on content of crushed bricks 
      

7.2 Estimation of Strength without C-S-H  Gel 
Formation 

     The quadratic average of the deviatoric stress within the weakest phase (lime 
matrix) was estimated in order to determine the effect of crushed bricks in the 
cocciopesto mortar. Such approach was inspired by estimation of the compressive 
strength of a cement paste and mortar by [1].  
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Fig. 7.4: Dependence of quadratic average of deviatoric stress in mortar on content of crushed bricks 
 
 
    First, the constant macroscopic strains (unit normal strain ε11 and unit shear strain 
ε12) were assumed as loading parameters. By addition of the crushed clay bricks in a 
reasonable amount into the mix the deviatoric stress within the mortar phase 
decreased. It should make the lime matrix less vulnerable to damage. The 
dependence of the quadratic deviatoric stress average within the matrix phase on the 
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brick content is depicted in the Fig. 7.4. The value of the deviatoric stress within the 
matrix, dependent on the brick content a, is divided by a reference value – the 
deviatoric stress within the matrix for the brick content a = 0, denoted as σmatrixdev(0). 
     The stiffness of bricks has also its influence – Fig. 7.5 shows the dependence of the 
ratio ║σmatrixdev(a)║/║σmatrixdev(0)║ on the brick content a for different stiffness of 
bricks. The values of elastic moduli Ebrick are not realistic and are used only to 
indicate the trend: 
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Fig. 7.5: Dependence of quadratic average of deviatoric stress in mortar on content of crushed bricks 
              for different brick stiffness 
 
 
The sample was loaded be a combination of normal and shear stress. This loading 
was chosen since it should be the critical one and it should simulate the loading 
induced during earthquake, to which the cocciopesto mortars should resist better 
than conventional mortars based on lime.  
     It can be seen in Fig. 7.5 that the more compliant bricks are added, the more 
deviatoric stress in the matrix phase can be expected. Also, the addition of voids, as 
the most compliant phase, increases the deviatoric stress in the matrix.  
     Due to the nature of the formulas used in homogenization according to the Mori-
Tanaka scheme, it turns out that the rate of relief, ║σrdev(a)║/║σrdev(0)║, in the 
individual phases is the same for all inclusions and inhomogeneities embedded in 
the matrix. In the case of coccipesto mortar, the estimated increase of deviatoric stress 
in the matrix, sand and brick particles with an increasing porosity can be seen in Fig. 
7.6. 
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Fig. 7.6: Dependence of quadratic average of deviatoric stress in individual phases on porosity 
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8 Calculation with C-S-H Gel Coating 

     It is reported in many papers, dealing with the cocciopesto mortars, that the thin 
layer of C-S-H gel forms at the lime - brick interface if the bricks are made of clay and 
are burnt at the appropriate firing temperature (which is about 600–900°C [21]). The 
C-S-H gel is an amorphous phase with properties, responsible for some 
extraordinary properties of Portland cement concrete.  
     The thickness of the C-S-H layer at the brick interface is assumed to be about  
20 μm for the calculations; the backscattered electron image of the interface can be 
seen in the following figure [17]: 
 

 
 
Fig. 8.1: Brick interface (I) between lime matrix (L) and brick aggregate (B) [17] 
 
 
     The estimation of the C-S-H gel thickness on the brick interface is one of the 
deficiencies in the modeling, however the thickness of 20 μm should be in a 
reasonable range. Another uncertainty is the elastic stiffness of the gel. There are 
basically two types of the gel present in Portland cement. As reported in the 
literature, e.g. [18], these are the low and high-density C-S-H gel. For the calculation 
of the effective properties of cocciopesto mortar, the properties of the low-density  
C-S-H gel were considered.  
     The nanoindentation results showed that the low-density C-S-H phase has a mean 
stiffness of about 22 GPa [19]. The density of the gel in calculation was considered as 
2000 kg/m3, as suggested in [20] and Poisson’s ratio as 0.20. 
     It is assumed in the calculations that 50% of the C-S-H gel occupies the voids, 30% 
of the C-S-H gel is assumed to consume the part of the matrix and the remaining 20% 
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is assumed to consume the part of the brick phase. These values are estimated, but 
they do not have any significant influence on the final results. Despite the uncertain 
material properties of the gel phase, the model is capable of predicting trends; 
however, it cannot predict the exact values. 
     For the coated inhomogeneities, the procedure suggested by [16], which is briefly 
described in this work (in the chapter 5), was used. As previously mentioned, the 
MATLAB software was used for all the calculations.   

8.1 Calculation of Effective Stiffness with C-S-H Gel 
Formation 

     All the calculations presented in this chapter, if not specified otherwise, are done 
assuming the size of the brick particles as 1 mm in diameter. It was assumed that the 
C-S-H gel coating significantly stiffens the brick particles. This should result in an 
increase of the cocciopesto mortars stiffness if the coating is created, even if the layer 
is relatively thin in comparison with the diameter of the brick particles.  
     For the same composition of the mortar, the calculated Young’s modulus of the 
mortar increased from Eeff = 1 621 MPa to Eeff = 1 825 MPa, if the formation of the  
C-S-H gel on the interface of brick particles was considered. The effect of the C-S-H 
coating on the effective stiffness of the mortar can be clearly seen in the following 
figure: 
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Fig. 8.2: Dependence of the effective stiffness on content of brick particles in mortar 
 
 
     The effective stiffness of mortar increases with a ratio of the coating thickness to 
the size of brick particles.  It is indicates in the Fig. 8.3, where the dependence of the 
elastic stiffness on the thickness of the C-S-H gel coating is depicted: 
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Fig. 8.3: Dependence of effective mortar stiffness on thickness of C-S-H gel coating 
 
 
     The ratio of the coating thickness to the size of brick particles also increases with 
the decreasing size of the brick particles. While the effective stiffness decreases with 
the addition of the crushed bricks of a big diameter (brick pebbles), the opposite is 
true for the tiny particles (brick dust). This can be seen in Fig. 8.4, showing the 
dependence of the effective stiffness on the brick content for relatively small and big 
crushed brick particles. 
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Fig. 8.4: Effective stiffness of mortar with coated and uncoated brick particles 
 
 
     It can be concluded that the C-S-H gel formation on the interface of the brick 
particles results in an increase of the effective stiffness of the mortar mix. This 
increase in stiffness is higher if the ratio of gel thickness to size of brick particles is 
relatively high. This can be ensured by the addition of the brick particles having 
smaller diameter. 
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8.2 Estimation of Strength with C-S-H  Gel Formation 
     The estimation of strength, based on the calculation of the deviatoric stress 
average in the individual phases, was done as in case of mortar without C-S-H gel, 
according to the procedure used in [1].  
     The increase or reduction of the deviatoric stress in matrix is strongly dependent 
on the coating thickness to size of brick particles ratio. If the added crushed brick 
particles are smaller, the effect of C-S-H gel coating becomes greater and the 
deviatoric stress within the matrix phase significantly reduces. Therefore, it seems 
reasonable to add a certain amount of the finely crushed bricks into to the mix, since 
it should result in the decrease of the deviatoric stress within the matrix, as indicated 
in the following figure: 
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Fig. 8.5: Dependence of deviatoric stress in matrix for different size of brick particles 
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9 Calculation with Multiple Brick Fractions 

     If the C-S-H gel coating is formed, the addition of the crushed brick particles 
having a small diameter should result in an increase of the effective stiffness of the 
mortar mix, and decrease of the deviatoric stress within the matrix. These 
phenomena are shown in Fig. 9.1 and Fig. 9.2. The lime matrix to crushed bricks to 
sand ratio 4 : 3 : 5 in the hardened mortar, having the porosity of 30%, was used. 
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Fig. 9.1: Dependence of mortar stiffness on diameter of brick particles 
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Fig. 9.2: Dependence of deviatoric stress increase in matrix on diameter of brick particles 
 
 
     For the conservation mortars a low elastic modulus and sufficient strength are, 
together with ductility, usually required [26]. The proper composition of the mortar 
can be prepared by using multiple fractions of crushed bricks. The fine brick particles 
in the mix should ensure the decrease of the deviatoric stress in matrix, and therefore 
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increase the mortar strength. On the other hand, the bigger fractions decrease the 
Young’s modulus and make the mortar more compliant. 
     The graph in Fig. 9.3 shows the dependence of the deviatoric stresses ratio on the 
amount of fine brick fraction within the brick particles. The quantity ║σmatrixdev║ 
stands for the deviatoric stress in matrix, corresponding to the given amount of fine 
brick particles substituting the big ones. ║σmatrixdev(m=0)║ represents the deviatoric 
stress in the matrix if the mix does not contains any crushed bricks at all.  
     

0 10 20 30 40 50 60 70 80 90 100

0.85

0.9

0.95

1

1.05

1.1

1.15

 dependence of deviatoric stress in matrix on fraction of brick particles, loaded by 11   0 and 12  0

amount of fine fraction [%]

|| 


de
v

m
at

rix
 ||

 / 
|| 


de
v

m
at

rix
(m

=0
) |

|

 
 
Fig. 9.3: Dependence of deviatoric stress in matrix on diameter of brick particles 
 
     It is clear from Fig. 9.3 that for the deviatoric stress decrease there should be more 
than  35 % of fine particles of crushed bricks (diameter 0.125 – 0.25 mm) and less than 
65% of brick pebbles (diameter 2 – 4 mm) in the mix. However, the prevailing fine 
crushed brick fractions cause an increase of mortar stiffness (Fig. 9.4) 
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Fig. 9.4: Dependence of mortar stiffness on diameter of brick particles 
 
 
It can be concluded from the previous figures that the reduction of the deviatoric 
stress in matrix is coupled with an increased effective stiffness. 
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9.1 Crushed Brick Size Optimization 
     A fraction of crushed bricks can be optimized towards a bigger compliance or 
bigger strength. This chapter provides an example of the crushed brick fractions 
optimization towards a better performance.  
     The mortar composition is considered, as previously, with the lime matrix to 
crushed bricks to sand ratio 4 : 3 : 5 in the hardened mortar, having the porosity of 
30%. First, a crushed brick fractions used in historic mortar, found in a Byzantine 
ancient structure and investigated by [9], was considered in calculation. Then the 
amount of individual crushed brick fractions was modified in such a way that the 
effective stiffness of the mortar is not significantly increased and the deviatoric stress 
in matrix is reduced.  
     It should be noted that only the fractions of crushed bricks are corresponding to 
the mortar samples from the Byzantine structure described in [9], not the ratio of 
mortar constituents. In addition, the biggest fractions of crushed bricks, exceeding  
4 mm were eliminated. However, the indicated trends should be valid for any similar 
mortar composition, based on lime, crushed bricks and sand, having a reasonable 
porosity. 
     It was found in [9] that the investigated Byzantine mortar had a crushed brick size 
distribution approximately as follows: 
 

2%7%

13%

17%

19%

43%

                                                  uniform distribution of size of crushed brick particles

 

 

  0.063 - 0.125  mm
  0.125 - 0.250  mm
  0.250 - 0.500  mm
  0.500 - 1.000  mm
  1.000 - 2.000  mm
  2.000 - 4.000  mm

0 0.5 1 1.5 2 2.5 3 3.5 4
0

20

40

60

80

100
 grain size distribution curve

diameter [mm]

cu
m

ul
at

iv
e 

vo
lu

m
e 

[%
]

 
 
Fig. 9.5: Approximate distribution of crushed brick size in ancient Byzantine structure 
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Such distribution of crushed brick particles should, using the micromechanical 
approach and assuming the above mentioned mortar composition, yield the effective 
mortar stiffness Eeff = 1909 MPa.  
     The modification of the brick particles distribution was focused on reduction of 
deviatoric stress in the matrix, while increasing the effective mortar stiffness as little 
as possible. The distribution of brick particles in the modified mortar can be seen in 
Fig. 9.6. The medium-size particles were eliminated and only the small particles, 
ensuring the decrease of deviatoric stress, were combined with particles of big size to 
ensure a relatively low increase of the effective mortar stiffness.  
     The fractions 0.063 – 0.125 and 0.125 – 0.250 mm in diameter were chosen to 
represent the small brick particles, because these fractions are reasonable with 
respect to the production possibilities. On the other hand, the fraction 2 – 4 mm 
representing the big particles can be substituted practically by any size of crushed 
bricks above 2 mm without influence on the results.  
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Fig. 9.6: Modified crushed brick size distribution 
 
 
     The calculated effective stiffness of mortar, having the modified distribution of 
crushed brick particles, is Eeff = 2646 MPa. The dependence of the effective stiffness 
on brick content, considering the original and modified crushed brick size 
distribution, is depicted in the following figure: 
 



CALCULATION WITH MULTIPLE BRICK FRACTIONS   66  
 

0.5 1 1.5 2 2.5 3 3.5 4
1.8

2

2.2

2.4

2.6

2.8

3

3.2
x 10

9  dependence of mortar stiffness on crushed brick content

brick content (a)

m
or

ta
r s

tif
fn

es
s 

- E
 [P

a]

 

 

uniform distribution crushed brick particles
small and big crushed brick fractions only

 
 
Fig. 9.7: Dependence of mortar stiffness on brick content 
 
The increase of mortar effective stiffness is rather high. However, the increased 
effective stiffness is balanced by a quite significant reduction of the deviatoric stress 
within the matrix, ensuring the bigger mortar strength. The dependence of the 
deviatoric stress in the matrix on crushed brick content, for the original and modified 
size distribution of crushed brick particles distribution, can be seen in the following 
figure: 
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Fig. 9.7: Dependence of mortar stiffness on brick content 
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Conclusion 

     The assumption of C-S-H gel formation on the matrix-crushed brick interface has 
a major influence on behavior of the cocciopesto mortars. According to the 
calculations based on micromechanical approach, the C-S-H gel coating plays a 
significant role, especially in case of small crushed brick fractions. 
     The main factor influencing the behavior of the crushed bricks (or other clay 
products, such as tiles or pottery) in a mix is the coating thickness to brick fragments 
size ratio. With the increasing ratio, ensured by an addition of the small crushed 
brick fractions, the mortar becomes stiffer and the deviatoric stress in a lime matrix 
decreases. Since the lime matrix is considered as the weakest constituent, the 
reduction of the deviatoric stress should result in an increase of the mortar strength. 
It is assumed that mainly the deviatoric stress component is responsible for the 
failure of the material and therefore the stress deviator, J2, was chosen as an adequate 
indicator.  
     The proposed model also confirmed the negative effect of voids in lime mortars, 
since the increased porosity causes quite large increase of the deviatoric stress within 
the lime matrix and makes the mortar more compliant.  
     It was also found that the addition of crushed bricks, having a bigger diameter, 
should make the mortar more compliant and cause an increase of the deviatoric 
stress in the matrix. The addition of crushed bricks of a small size results in the 
opposite behavior – the mortar becomes stiffer and the deviatoric stress in the lime 
matrix is reduced. 
     However, the results provided in this work, cannot be considered as exact because 
of a few simplifications and uncertainties in the calculation. The Mori-Tanaka 
homogenization technique assumes the materials to behave linearly and it is 
expected that the C-S-H gel should have additional positive effect on the mortar 
strength, if the non-linear behavior were considered. The thickness of the C-S-H gel 
coating, 20 μm, cannot be taken as the exact universal value, since it is dependent on 
the chemical composition of the individual mortar constituents. There is also 
uncertainty around the reduction of porosity, if the C-S-H gel is formed.  
     Despite the above mentioned simplifications, the model should be able to 
correctly predict the trends and serve for the optimization of the mortar towards the 
desired properties. 
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