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Abstract

Lime-based mortars were used for a construction of historic buildings and the
present conversation practice is using this type of mortars because of their
compatibility with the original materials. The cocciopesto mortars, containing pieces
of crushed bricks (or other burnt clay products), were used mainly during the
Byzantine and Roman period. These mortars exhibit quite extraordinary mechanical
properties due to formation of C-S-H gel coating on the interface of lime and
fragments of the crushed clay products.

The micromechanical approach and Mori-Tanaka homogenization of coated
particles explain some specific features of cocciopesto mortars. The calculations
indicate trends for different composition of mortar, porosity and size of crushed
brick particles. The special attention is paid mainly to the influence of crushed bricks
within the mix on the effective elastic stiffness and strength. The suggested approach
enables an optimization of the mortar composition towards a better performance.

Keywords: cocciopesto, micromechanics, Mori-Tanaka, strength estimation, C-S-H
coating

Abstrakt

Véapenné malty byly vyuzivany pro konstrukci historickych staveb a soucasna
pamatkova péce vyuziva tento typ malt kvili jejich kompatibilité s ptvodnimi
materialy. Malty typu cocciopesto, obsahujici kousky drcenych cihel (nebo jinych
pélenych produktt z keramické hliny), byly pouzivany zejména béhem byzantského
obdobi a ve Starovékém Rimé. Tyto malty se vyznacuji vyjime¢nymi mechanickymi
vlastnostmi diky formaci tenké vrstvy C-S-H gelu na povrchu drcenych cihel.

Mikromechanicky  pfistup a  homogenizace technikou Mori-Tanaka,
modifikovanou pro ¢astice potazené tenkou vrstvou, vysvétluji nékteré specifické
vlastnosti malt typu cocciopesto. Vypocty naznacuji trendy pro rtizné slozeni malty,
porositu a velikost drcenych cihel. Zvlastni pozornost je vénovana zejména vlivu
drcenych cihel ve smési na efektivni elastickou tuhost a pevnost. Navrhovany
pfistup umoziiuje optimalizaci smési smérem k lepsim mechanickym vlastnostem.

Klicova slova: cocciopesto, mikromechanika, Mori-Tanaka, odhad pevnosti, vrstva
C-S-H
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Introduction

The present conservation practice uses air lime or hydraulic lime mortars, because
these are compatible with the original materials. The use of air lime presents
problems with slow setting, inability to harden under water, lack of durability and
poor mechanical strength. Therefore, the hydraulic lime-pozzolan mortars were
widely used in the past and are still used nowadays for repair. These mortars are of
higher porosity and lower strength than cement-based mortars, but they exhibit
better durability.

Phoenicians were probably the first ones who added crushed clay products, such
as burnt bricks, tiles or pieces of pottery, to the lime mortar in order to increase its
durability and strength. Romans used this type of mortar in areas where other
natural pozzolans were not available and called such material “cocciopesto”. The
structures, mainly from the Byzantine period, have also very thick joints, often
comparable to the size of bricks. Together with the enhanced mechanical properties
of the cocciopesto mortar, the use of the thick joints probably results in the increased
resistance to earthquake loading, since the non-linear behavior of the mortar allows
for better energy dissipation.

By closer investigation, it was found that the mortars containing crushed clay
products exhibit a hydraulic character due to formation of C-S-H gel on the lime-
brick interface. This component is responsible for some extraordinary properties of
portland cement concrete and also the positive features of the lime-crushed brick
mortars can be attributed to the high strength and quite stiffness of the C-S-H gel
coating.

The development of the micromechanical model was inspired by other works,
such as [1], using similar techniques for an estimation of material properties of
concrete or cement-based mortars. In particular, the Mori-Tanaka method, modified
for the homogenization of coated particles, was chosen for the calculation of the
effective mortar stiffness and strength estimation. Even thought these models are not
expected to provide exact values, they should be able to predict the trends and
therefore provide an explanation for the characteristic properties of the mortars
containing crushed clay products.

The first part of this work provides a theoretical background of the
micromechanical homogenization. In particular, the governing equations of linear
elasticity, decomposition of stress and strain tensors to volumetric and deviatoric
parts, stiffness homogenization of uncoated and coated particles and strength
estimation are briefly explained. In the second part, the reader is introduced to the
issue of cocciopesto mortars and the influence of individual components, mortar
porosity and size of crushed brick particles is investigated. All the calculations
presented in this work were done using the MATLAB software.
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Goals

The main goal of this diploma thesis is to investigate the behavior of historic
cocciopesto mortars. In particular, the main goals of the thesis are to:

study the issues of mortars with crushed bricks

study the influence of the C-S-H gel formation on the brick-matrix interface
study the homogenization techniques and their theoretical background
study the techniques for strength estimation

create a reliable program for homogenization and strength estimation
decide the appropriate composition of investigated mortar

investigate the influence of individual constituents and C-S-H gel formation
on the effective mortar stiffness, with an emphasis on the influence of crushed
bricks in the mix

investigate the influence of individual constituents and C-S-H gel formation
on the mortar strength

interpret the results and explain of the specific behavior of cocciopesto
mortars



PART I:
THEORETICAL
BACKGROUND
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1 Elasticity Equations

The governing equations of elasticity involve displacement, strain and stress
fields, and they are valid if the structure undergoes only small deformations and the
material behaves in a linearly elastic manner. Scheme of the overall system appears
summarized in Fig. 1.1.

Displacements: Body forces:
ui (u1’ u27 US) bi <b1’ bZ’ bS)
|
geometry: 4\ S
iy equilibrium:
e=0u .
Jo+b=0
constitutive laws: ‘
Strains: o=Le Stresses
eij 12 c=Mo Uij I;123

Fig. 1.1: Diagram of kinematic and static equations

1.1 Stress-to-Displacement Relations

1.1.1 Displacements

The displacements of the points within an elastic body are is described by three
components (u, v, w) or (ui, uz, us), all of them dependent on the position in the
Cartesian coordinate system (x, y, z) or (x1, x2, x3). In a matrix notation, the
displacements are arranged in a vector as follows:

u](x]"XZ’XS)
u(x): uz(x],xz,x3) (1.01)
u

3(x,,x2,x3)

while in the index notation, the field of displacements can be described as

=1,2,3
ul.(xj) ; 123 (1.02)
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1.1.2 Strains

Strains describe the deformation of the body. At a point, the stretching, e.g. in the
x-direction, can be seen as the differential displacement per unit length. The x-
component of strain is then

g, = lim M _ou (1.03)
Ax—0 Ax Ox
therefore, the normal strain can be understood as a displacement gradient. The
distortion of the material, which can be described as the change in originally right
angles, is the sum of tilts imparted to vertical and horizontal lines (also called
engineering strain):

Y. =V, 17, ®tany, +tany, :@+a—u (1.04)
’ ox 0Oy

For other displacement gradients ¢, €, and distortions yy:, ¥z« the same reasoning
can be applied with cyclic change of coordinates x — y — z — x and displacements
U—v—w—u

The strain is a second order tensor and therefore the components can be arranged

as follows:
i ou 1{ou ov 1 (6u 6w]—
ox 2\oy ox) 2\0z ox
e= 1 6l+@ @ 1 @+6—W (1.05)
2\ oy oOx oy 2\ 0z oy
1 (6w ou ] 1{ov ow ow
|2\ ox 0z) 2(0z oy oz |

where, in the tensorial notation, shear strains (distortions) are halves of the
engineering strains. The difference between vectors (first order tensors) and second
order tensors shows up in how they transform with respect to coordinate rotations.

The index notation provides a compact description of all the components of three-
dimensional states of strain:

& =— Ly =—\u.  +u.. 1.06
g 2[axj ax] 2(ul,J u],l) ( )

1

where the comma denotes differentiation with respect to the following spatial
variable (partial derivative). This double-subscript index notation leads naturally to a
matrix arrangement of the strain components, in which the i-j component of the
strain becomes the matrix element in the ith row and the jth column:
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ou, 1(0Ou, Ou, 1(0Ou, Ou, |
ox, 2\ 0x, Ox 2\ Ox;  Ox,
i fe 1(0u, ou ou 1{Ou, Ou
E=18y &n &n S e —= —| =2+ (1.07)
2\ 0x, Ox ox, 2\ Ox; Ox,
€31 €y &y 1(8
Lfou,  ow | 1f0u, Ouy Oy
2\ ox, oxy;) 2\ 0x; Ox, Ox,4

Since the strain tensor is symmetric, i.e. & =

independent strains, as might have been expected [2].
Sometimes it is convenient to arrange the strain components in a vector, or rather

&ji, there are six rather than nine

pseudovector. Strain is actually a 2" order tensor, like stress or moment of inertia,
and has mathematical properties very different from those of vectors, which must be
taken into account while transforming or calculating the norm of strain. The ordering
of the elements in the pseudovector is arbitrary, but it is conventional to list them in
order (1, 1), (2, 2), (3, 3), (2, 3), (1, 3), (1, 2) [2]. This arrangement yields so-called Voigt
notation.

Following the rules of a matrix multiplication, the strain pseudovector can also be
written in terms of the displacement vector and proper operator. The strain-
displacement relationship can be expressed as

g=0u (1.08)
e.| [arox 0 0 |

g, 0 a0 |

‘. 0 0 ol

y.[7| 0 are asoy :V

vo| 676z 0 orox

vo| lorey o/ox 0 |

In so-called Mandel notation, the components of strain are arranged in the
pseudovector and the shear components of strain tensor are multiplied by V2 as

follows:

Such arrangement brings simplifications to many operations.

£, 0/ ox 0 0

£ 0 o/dy 0
u

Ex3 0 0 0/0z

_ 1.09

2, 0 (212)@r8z) (212) a/ay ’ L5)
w

J2e,| | W272)0782) 0 2120/ éx)

V2e,| |(272)@rav) (J212)0/x) 0
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1.2 Static Equations

The force equilibrium on an infinitesimal cube results in the following equations
(Cauchy’s equations):

0
oo, I 0T +b, =0
ox oy oz
ot oo ot _.
Y4+ T 4b =0 (1.10)
ox oy o0z 7
0
o7 NEC 90, +b. =0
ox oy oz

where b; are body forces, such as gravity. These equations can be written using the
index notation as

G, +b =0 (1.11)

_ (o,
9 0 0 o 2 9
ox oz oyl ” b 0
G X
g 0 9 0 0 )% +4b, =10 (1.12)
oy oz ox ||7,,
o o 0 b.J 10
o 0 — — — Tre
i 0z Oy Ox 1z
xy
From the moment equilibrium on the infinitesimal cube, we get:
T.=T,
Ty =Ty (1.13)
Xy = X
due to this fact the stress tensor, here in the matrix representation,
Gl 1 012 613
6=0,=|0, Oy, Oy (1.14)

O3 O3 O3

is also symmetric. The element in the it row and the jth column of this matrix is the
stress on the ith face in the jth direction.
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Equilibrium of the stress and surface traction on the boundary can be expressed
by Cauchy’s formula. It requests the equilibrium of the external traction forces with
internal stress. The traction t is associated with any plane with normal 7. It is a stress
on the surface of the body

t= fim 2F (1.15)
A4—0 A4

where the externally applied force F comprises of components in direction of
coordinates. Therefore, the traction t is completely defined by three traction vectors
associated with coordinate planes, for instance

Gx
9 =17 (1.16)
sz
generally, for an arbitrary normal plane 7 it holds that
t™ =tYn +tVn +t9n, (1.17)
which can be written in compact form as
t=on (1.18)
and in the index notation as
t)) =oyn, (1.19)

where n; is a multiple of the cosine angle between the investigated plane and
coordinate system (it is a projection onto the coordinate axes).

1.2.1 Principal Stress

To find the stress on the plane where the corresponding traction vector is
perpendicular to it and shear stresses vanish we put

on=on (1.20)

where the stress on the right hand side of the equation is so called principal stress.
The equation can be expressed as

(6—cI)n=0 (1.21)

where I is the identity matrix. A non-trivial solution is obtained if
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det (6 —ol)=0 (1.22)
Calculation of the determinant leads to the following characteristic equation:
oc’-lo’-lo-1,=0 (1.23)

where I, I, I3 are so called invariants of the stress tensor (their values remain the
same whatever the rotation of the coordinate system is). The first invariant is

I,=0,+0, +0. (1.24)

the second one can be calculated as

o, T o, T
I, :de{ g yz}+det{ax sz}+de{ ' xy} (1.25)
T, © T, © T, O

zy z zx z rx y

Finally, the third stress invariant can be expressed as

Gx Txy sz
I, =detitr, o, 7, (1.26)
T, T, O

zx zy z

The same reasoning is used for calculation of the principal strain calculation and
strain tensor invariants.

1.3 Constitutive Relations

The previous sections deal only with the kinematics (geometry) and static
equilibrium of the body; however, they do not provide insight on the role of the
material itself. The kinematic equations relate strains to displacement gradients, and
the equilibrium equations relate stress to the applied tractions on loaded boundaries
and also provide the relations among stress gradients within the material. Six more
equations, relating the stresses to strains are needed, and these are provided by the
material’s constitutive relations. In this section, isotropic elastic materials are dealt
with [2].

In the general case of a linear relation between components of the strain and stress
tensors, we might propose a statement of the form:

o, =Ly (g,d — 521) (1.27)

where Liju is a 4™ order tensor and €' is the initial (or eigen / stress-free) strain.
Because indices kI do not appear in the equation after summation, they are called
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“dummy indices”. Previous expression constitutes a sequence of nine equations,
since each component of ¢j is a linear combination of all the components of &q. For
instance

Oy =Ly &) +Lpn81, +oot Lz €55 (1.28)

Based on each of the indices of Lix taking on values from 1 to 3, we might expect 81
independent components in L. However, both the stress tensor and the strain tensor
are symmetric (0; = o0 and & = ¢i), we must also have Lju = Lijx and
Lix = Lji. These relations are called minor symmetries. The major symmetry of the
stiffness tensor is expressed as L = Lxij. This reduces the number of L components
to 36, as can be seen from a linear relation between the pseudovector forms of the
strain and stress [2]:

o, &,
Gy Ln le Lle gy
o, _ L, L, ... Ly||é€. (1.29)
T, : S
T, Ly Ly ... Lg | |7
Txy 7/xy
or, using the Mandel notation:
O le L1122 L1133 \/ELmz \/ELHB \/ELHU €
O L221 1 L2222 L2233 \/ELzzlz \/EL2223 \/EL2213 €y
O33 _ L331 1 L3322 L3333 \/ELsslz \/EL3323 \/ELBB €33 (1 . 30)
\/5623 \/Elen \/Elezz \/EL1233 2L1212 2L1223 2L1213 \/5823
\/5613 \/ELB] 1 \/ELzszz \/EL2333 2 L2312 2 L2323 2 L2313 \/5813
\/5612 _\/ELBH \/ELlszz \/EL1333 2L1312 2L1323 2L1313 h \/5812

It can be shown that the L matrix in this form is also symmetric and therefore it
contains only 21 independent elements.

If the material exhibits symmetry in its elastic response, the number of
independent elements in the L matrix can be further reduced. In the simplest case of
an isotropic material, having the same stiffness in all directions, only two elements
are independent - for example Young's modulus (E) and Poisson’s ratio (v). From
these, so-called shear modulus can be calculated:

(1.31)

If a body is loaded by the stress o, the resulting deformation & = 0r /E and the
other normal components of strain are ¢, = ¢; = -vex = -vox /E. In the general stress-
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state, the other normal strain components are derived analogically (however, the
material must be isotropic):

g, = ;(Gx —vo, —VUZ) (1.32)
g, :;(—vax+ay—vaz) (1.33)
£, :;(—vax —vo, +GZ) (1.34)

In case of isotropic material, each shear deformation is proportional to the
corresponding shear stress with the constant of proportionality 1/G:

Y = Tg’ Al ; V)rxy (1.35)
T 2(1+v)
T _ 1.36
Ve = C T (1.36)
T, 21+
Y= = ( Ev)ryz (1.37)

The six above equations can be written in the matrix form (using the Mandel notation
and therefore with the last 3 diagonal terms divided by 2) as

g, I —-v —v 0 0 0 o,
€, -v 1 -v 0 0 0 o,
& - - 1
s _ L=V v 0 0 0 1]e (1.38)
Y. E[O0 0 0 2(+v) 0 0 T,
- 0 0 0 0 2(+v) 0 T,
Y |0 0 0 0 0 2(+v)| |z,
which can be written in compact form as
¢=Mo (1.39)

where M is the elastic compliance matrix. By inversion, we get the generalized
Hook's law:

6=(M)'e=Le (1.40)

where
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B
(1+v)1-2v)

(1.41)

S O O < <
S O O <
[\
—
o]

is the elastic stiffness matrix of an isotropic material (using the Mandel notation and
therefore with the last 3 diagonal terms multiplied by 2).
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2 Hydrostatic and Deviatoric Components

2.1 Hydrostatic and Deviatoric Stresses

A state of hydrostatic compression is the one in which no shear stresses exist and
where all the normal stresses are equal. For this stress state it is obviously true that

_ 01 1t0n+t05 _ ld (2.01)

o, 3 3 Tm

This quantity (so called mean stress) is one third of invariant I1 (so called hydrostatic
or volumetric stress), which is a reflection of hydrostatic pressure being the same in
all directions, not varying with axis rotations.

The stress tensor is then composed of the hydrostatic part and the deviatoric part:

o, = ;Gkkcsl.j +s, (2.02)

J

where the symbol 6; is the Kronecker delta, which is defined as

5 =L Hi=J (2.03)
0 if i# g

The hydrostatic stress-state is defined as follows:

c, 0 0
=0 o, O (2.04)
0 0

m

and the deviatoric stress state is then

o, —0, O O3
S = 0y 0y —0, O3 (2.05)
O3 O3 O3 =0,

The hydrostatic (volumetric) stress is related to the change of volume of a material
during deformation, while the deviatoric part is responsible for the distortion. This
concept is also convenient because the material responds to these stress components
in very different ways. For instance, plastic and viscous behavior is caused
dominantly by the distortional components, with the hydrostatic component causing
only an elastic deformation [2].
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The graphical representation of the stress tensor decomposition is shown in the
following figure:

A0y
$ On AU 0,
j; 01 1 / Um % 01 1 O-m
03 On 050,

Fig. 2.1: Decomposition of stress in hydrostatic and deviatoric part

2.2 Hydrostatic and Deviatoric Strains

In cubical element, originally of volume abc, subjected to normal strains in all
three directions, the change in the element’s volume is

AV a'b'c'-abe a(1+gx )b(1+gy)c(l+gz)—abc B
Vo abc - abc B

(2.06)

:(1+gx)(1+gy)(l+gz)—1zgx +e, +e,

where products of strains are neglected. The volumetric strain is therefore the sum of
the diagonal elements in the strain tensor (also called trace of the matrix, or Tr(g)). In
the index notation, this can be written simply as

& == (2.07)

Similarly to mean stress 0y, the mean strain is calculated as

_ &y téy téy _lgkk (2.08)

gm
3 3
and the strain tensor is then composed of the hydrostatic and deviatoric part:

5=y 5ud e, (2.09)

q

The hydrostatic strain is defined as follows:
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e, 0
e=| 0 ¢, O (2.10)
0 ¢

and the deviatoric part is obtained by subtraction of &, from the diagonal terms from
the strain tensor:

&y (2.11)

2.3 Constitutive Relations

Since ey is a relative change of volume, it must be independent of the coordinate
system (therefore, it is so called invariant). The relation between volumetric strain
and mean stress can be derived as follows:

&y :E(Gx—voy—vm)+;(—vax+ay —vaz)+;(_vgx_vay+dz):
.40+ )_3(1—2v)(6x+6y+02)_6m (2.12)
ST 3 K

1-2v

where

E
A=) 219)

is so called bulk modulus. The bulk modulus is the stiffness parameter that connects
the mean hydrostatic stress 0, with the volumetric strain ev. Note that as v — 0,5,
K — oo. That is, the material becomes infinitely stiff as Poison’s ratio approaches 0,5.
Values of Poisson’s ratio greater than 0,5 are not possible since such values imply
that a tensile hydrostatic stress would cause a volumetric contraction. The volumetric
change is proportional to the mean stress only in case of an isotropic material.

The normal component of the deviatoric deformation e. can be expressed as

(2.14)

z E Gﬂ’l
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and since

s, +8,+s, = (o, —Gm)+(0y —am)+(az ~0,)=0, +o,+0,-30, =

(2.15)
=30, -30, =0
the sum of the deviatoric normal components is equal to zero. Therefore
VS, =-VS, —VSs, (2.16)
and
e, :l(sx +vsx):1+—vsx = (2.17)
E E 2G

The same relation holds for the other normal components of the deviatoric strain
tensor as well. The shear strain components are (as mentioned before) related to the
shear stress by the shear modulus G without factor 2. For instance the first shear
component:

2(1+v) T,
- TW:(; (2.18)

Vo =

2.3.1 Index Notation, Lamé’s Constants

For the diagonal terms in the strain tensor, for instance the strain &3, the strain-
stress relationship can be expressed as

1 1
€ :EGH _EV(Uzz +033):

(1+v)

1
o, _EV(G” +0,+0y) (2.19)

which can be, using the index notation, for all normal strains expressed as

I+v v P
SU:(E)GU—EGkk if i=j (2.20)

For the shear components of the stress tensor, for instance the strain €12, the strain-
stress relationship can be expressed as

_(+y) (2.21)

12 12
E

which can be, using the index notation, for all shear strains expressed as

£, = o, if i#j (2.22)
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The previous equations (for normal and shear strains) can be written in a single
expression by making use of the Kronecker delta:

1+v 1%
gij :(E‘)Gij _Eakké‘ij (223)

The required form of the stress-strain relationship (dependence of stress on
strains), using so-called Lamé’s constants y and A has a form:

O, =2uE; + AS;€y (2.24)

J

In order to establish the relationship between Lamé’s constants, Young’s modulus
and Poisson’s ratio, it is necessary to compare the two forms of the constitutive
equations for an isotropic elastic material with the previous equation. However, in
order to make that comparison, the equations for strain-stress relationship must be
inverted, because the previous equation expresses the stress components in terms of
the strain components.

By simple arrangement, the following equation can be obtained:

E
O = (1 _ 2v) E (2.25)
and since we know that
E 1% E 1%
=l . +—0,0. |= . S. 2.26
= e 5 5O ) (220
where the oi can be then substituted as follows:
E Ev
L= .+ £,.0. 2.27
S ) ) (1-2) 227
Therefore, the Lamé’s constants can be expressed as
E
=G = 2.28
H 2(1 + v) (2:25)
and
PRI ) R S (2.29)
(1+v)(1-2v) 3

interms of E, v, K and G.
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2.3.2 Tensorial Notation

In tensorial notation, there is needed the use of the unit fourth-order tensor, L ,
with components:

Ly = 6,0 (2.30)

Jl
with Kronecker delta being called the unit second-order tensor. This tensor exhibits
major symmetry but not minor symmetry, and it has the important property thatI: €
= ¢:I = e for any second-order tensor ¢ [3].

Sometimes it is useful to work with the symmetrized unit fourth-order tensor, Is,
which has components:

5.0,+0,0.
[;;d :( ik ]l;_ il ]k) (231)

This tensor exhibits minor and major symmetry but the identity I: € =€ : I = € holds
only if the second-order tensor ¢ is symmetric [3].
The stiffness tensor in linear isotropic elasticity is expressed as

L,=10®d+2ul; (2.32)
or in index notation as
Leijkl = A0y 511 + /’l(aik 4 a7t 6,0 Jk ) (2.33)

Using the tensorial notation, the generalized Hooke’s law can be presented as

6=L,:e=10®0d:e+2ul;:e¢=310¢, +2ue (2.34)
where
1
&y 256:8 (2.35)

is one third of the trace of the strain tensor, representing the relative change of
volume. The volumetric part of the strain tensor is ev8, and when we subtract it from
the strain tensor, we obtain the deviatoric strain [3]:

e:a—ﬁeV:a—;6®6:a:(15—;8®8]:a:ID:a (2.36)

Therefore the deviatoric projection tensor is
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I, :Is—;é‘)@ﬁ (2.37)
and the volumetric projection tensor is
1
I, :§6®6 (2.38)

Then the volumetric-deviatoric decomposition of the strain tensor can be done as
follows [3]:

e=I,:e=(I,+1,):e=1,:e+1,:8=¢,+8, =¢,0+e (2.39)

vol

And the stress tensor can be decomposed in the same way:

6=I,:6=(,+1,):6=1,:6+1,:6=0,,+6,, =0,8+s (2.40)
where

O'VZIVIGZ;ﬁtﬂ (2.41)
is the mean stress and

s=1,:6=0-0,0 (2.42)

is the stress deviator.
The elastic stiffness tensor can also be decomposed into its volumetric and
deviatoric part. Realizing that

d0®6=3I, (2.43)
we can rewrite the stiffness tensor in linear isotropic elasticity as

L,=28®8+2ul, =311, +2u(l, +1,)=

(2.44)
=(3A+2u)l, +2ul, =3KI, +2GI,

because the coefficient (31 + 2p) is recognized as three times bulk modulus K and y =
G = shear modulus. The generalized Hooke’s law [3]:

6=L,:e=(3KI, +2G1,):e=3KI, :+2GI, :£=3Ke,5 +2Ge (2.45)
is split into the volumetric and deviatoric part:

o, =3Ke, and s=2Ge (2.46)
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2.3.3 Engineering Notation

While the tensorial notation is useful in theoretical derivations, for developing a
numerical algorithm that should be implemented into a computer code, it is more
convenient to store the stress and strain components in one-dimensional arrays
(pseudovectors) and stiffness moduli in matrices [3].

The normal components are usually arranged in a natural order, i.e. ox followed by
oy and o0.. For the shear components, it is possible to use order, but the selected
convention must be used throughout the entire project [3]. One possibility is to set

O, Oy € €

X

o 022 gy 822

€ €
= = d = : = 33 247
¢ \/E‘L'yz \/5023 meE ﬁyyz ﬁ2523 4

\Erxz ﬁam J2 Y \/528]3
«/E‘L'xy \/5612 ﬁyxy ﬁzgn

The engineering shear component yyy, is twice the tensorial shear strain because then
the energy product

6:£=0,¢,; (2.48)

can be simply replaced in the engineering notation by a simple scalar product of
column vectors, oTe.
However, the double contraction in evaluation of the tensorial norm defined as

o, =-s:o (2.49)
resulting in

L 2 2 2 2 2 2
6:6=0,0,=0,+0,+0;+..+0; +0;, +0; =

2 2 2 2 2 2 (2.50)
=0 T0yp +05 + 2(0-23 TO; T+ 0-12)
is equal to the pseudovector multiplication
6'c=0+0,+0,+20, +20,, +20], (2.51)

only if we multiply the shear components in the pseudovector by the factor of V2
(Mandel notation). Otherwise (using the Voigt notation) the diagonal scaling matrix
has to be inserted:

6, =-/c"Po (2.52)
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where the scaling matrix P has the following form:
P=diag[l112 2 2] (2.53)

Such scaling matrix leaves the normal components as they are and doubles the shear
components.

When calculating the norm of the strain tensor, using the Voigt notation, it is also
necessary to insert a scaling matrix, but not the same one as for two stress-like
tensors. Since the shear components have already been doubled, the corresponding
scaling factors are now 0.5 instead of 2. Therefore, it turns out that the appropriate
scaling matrix is the inverse of P and the tensorial norm of € is in the engineering
notation evaluated as

=/e'P'e  where P'=diag[l1 1 0.5 0.5 0.5] (2.54)

€

&

However, if the Mandel notation is used, the scaling matrix equals to 1.
For the purpose of the volumetric-deviatoric decomposition, the engineering
counterpart of the unit second-order tensor (Kronecker delta) is established as

o={1 1 1.0 0 0} (2.55)

The volumetric-deviatoric decomposition is in the engineering notation based on
projection matrices

I, = 557 (2.56)
3
and
I, =1-1, :1—;55T (2.57)

with I representing the identity matrix. Using the Mandel notation, the elastic
stiffness matrix can be simply expressed by means of the volumetric and deviatoric
projection matrices as follows:

L, =3KI, +2GI,, (2.58)
The generalized Hook’s law

6=3KI, +2GI,)¢ (2.59)

can be then split into the volumetric and deviatoric part:

o, =3Ke, and s=2Ge (2.60)
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3 Stiffness Homogenization

Many materials are inhomogeneous, i.e., they consist of dissimilar constituents
(phases) that are distinguishable at some small length scale. The behavior of
inhomogeneous materials is determined, on the one hand, by the relevant materials
properties of the constituents and, on the other hand, by their geometry and topology
(phase arrangement) [5].

Defects in an elastic material give rise to inhomogeneous stress and strain fields
by which the defects can be characterized. Equivalence between an inhomogeneous
material and some homogeneous material with a certain eigenstrain or eigenstress
distribution can be established [5].

3.1 Eigenstrain

Since the eigenstrain is not caused by stress, eigenstrains are also referred to as
stress-free transformation strains (superscript t). Formally, all kinds of strain, which
may prevail in a material in the absence of stress, can be interpreted as eigenstrains;
typical examples are thermal or plastic strains. In the framework of infinitesimal
deformations the total strains ¢;; are the sum of elastic strains &% = Miju or and the
eigenstrains: g; = €%; + €!j. The stress-strain relationship is then [4]

o, =Ly (g,d — 521) (3.01)

3.1.1 Inclusions

The phase transformation in solids, where atomic rearrangements change the
geometry of the lattice, gives rise to spatial distribution of eigenstrain ().

If nonvanishing eigenstrains prevail, only in some bounded subregion £ of the
homogeneous material, this region is called an inclusion and the surrounding
material is called a matrix. It has to be emphasized that the elastic properties of an
inclusion and the matrix are the same; otherwise the region €2 would be called an
inhomogeneity [4].

3.1.2 Eshelby’s Solution

Probably ].D. Eshelby (1916-1981) has found the most important analytical
solution of micromechanics. It is valid for an unbounded domain which contains an
ellipsoidal inclusion 2 with principal axes a..
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X
oG ’

P

X3

Fig. 3.1: Ellipsoidal inclusion in an unbounded domain

If the eigenstrains in the inclusion are constant (e;j = const.) then the remarkable
result holds that the total strains ¢; inside the inclusion are constant as well. Via
fourth-order Eshelby’s tensor Si they depend linearly on the eigenstrains [4]:

€; =S,y = const in Q" (3.02)

The Eshelby’s tensor is symmetric in the first and second pair of indices, but in
general it is not, symmetric with regard to an exchange of these pairs (exhibits the
minor but not the major symmetry) [4]:

Sijld = Sjilk = Sijlk > Sijld * Sklij (3~03)

In case of an isotropic material, its components depend only on Poisson’s ratio v, the
ratios of the principal axes a;, and their orientation with respect to some Cartesian
coordinate system. The respective expressions are very long and can be found in
literature (e.g., Mura, 1982; Kachanov et al., 2003).

The solution by Eshelby (1957) holds for an arbitrary anisotropic material. Yet,
only in case of an isotropic material is a closed-form representation of the tensor Sij,
and the fields outside the inclusion, possible. The Eshelby solution for ellipsoidal
inclusions is of fundamental importance for analytical homogenization techniques.

Starting from the general ellipsoid various special cases can be derived. For
instance, the two-dimensional solution for an infinitely long cylinder of elliptic cross
section in plane strain is obtained from the limit process a; — o [4].

For a spherical inclusion (a; = a4) in an isotropic material the dependence on the
principal axes and their orientation vanishes (geometric isotropy) and the Eshelby
tensor reduces to [4]

1 1
Sy =a” g‘si;‘sk/ +B (Iisz _351.'/'5k[] =1, + V1, (3.04)
where
Jo_ Lev® 3K d ﬁ:2(4—5v(°)): 6(K® +2u) (3.05)
3(1-v@) " 3K 444 15(1-v©) " 53K +4u)
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are scalar parameters. The superscript (0) stands for the matrix and (r) is later used
for a representation of other components (inhomogeneities). The entire (i.e., elastic
and geometric) isotropy of the problem then allows the decomposition into
volumetric and deviatoric strain, which highlights the meaning of the parameters a

and p [4]:

gp=agy and g, =Pe  inQY (3.06)
Therefore the fourth rank Eshelby tensor turns out to be isotropic when the shape of
the inclusion is spherical and can be characterized by a and B (representing the
hydrostatic and the deviatoric parts of the constraint, respectively).

3.2 Inhomogeneities

The second class of defects, which instead of eigenstrains in a homogeneous
material are characterized by inhomogeneous, i.e., spatially varying, material
properties are called inhomogeneities. We first describe these defects by an
equivalent eigenstrain in some homogeneous comparison material in order to then
apply again Eshelby’s result [4].

This strategy involves replacing an actual perfectly bounded inhomogeneity
(superscript (i)), subjected to the eigenstrain €, with an equivalent (fictitious)
homogeneous inclusion (superscript (m)) with the equivalent eigenstrain €. This
equivalent eigenstrain must be chosen in such a way, that the inhomogeneity and the
equivalent homogeneous inclusion attain the same stress state o) and the same
constrained strain ¢ (Eshelby, 1957).

When o() is expressed in terms of the elastic strain in the inhomogeneity, the
following equality holds:

¢” =1L" :(8" —a’): | :(8" —a’) (3.07)

Here, the differences €° - €t and €° - €T are the elastic strains in the inhomogeneity and
the equivalent homogeneous inclusion, respectively. We can express the constrained
strain using the Eshelby tensor as € = Se ™. Hence, the equation for the stress ¢ can
be also written as [5]

¢ =LY :(S:a’ —a’):L("” (S-1):¢° (3.08)
where I is the symmetric fourth-order unit tensor, which turns out to be the identity
matrix in the Mandel notation.

By simple manipulation with the equation for 6@, we can express the equivalent
eigenstrain as a function of the stress-free eigenstrain €’ in the real inclusion as

g = [(L(” —L('”)): S+L("”]“:L(” g (3.09)
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This, in turn, allows the stress in the inhomogeneity, 6@, to be expressed as
¢ =L™:(S-TI) :[(L“) —L™m ): S+L™ ]“: LY ¢ (3.10)

If a perfectly bonded inhomogeneity in an infinite matrix is subjected to a uniform
mechanical strain € or external stress ¢4, the strain in the inclusion is a superposition
of the applied strain and of the term e¢ that accounts for the constraint effects of the
surrounding matrix. The stress in the inhomogeneity is after such loading [5]:

6" =L? (g +2°)=L" :(e" +&° —¢") (3.11)
corresponding to the strain
g’ =g +e° =g +8S:¢& (3.12)

On the basis of these relationships the strain in the inhomogeneity can be expressed
as

g = [I +S:M™ :(L“) —L(’”))]_] ;g (3.13)

And since the strain in the inhomogeneity is homogeneous (piecewise constant),
€@ = <g®> = E(), the strain concentration factor according to Hill (1965), describing
the relation between the strain inside the inhomogeneity and the external load, for
dilute inhomogeneities is

A =[1+8:M™ (L —Lm)]" (3.14)

By setting <e®> = L()<¢(> and using €* = M("¢?, the dilute stress concentration factor
can be found from the previous equation as [5]

B{) =L": [I +S:M™ (L(i) _L(m))]“ LM —

(3.15)
=[1+1 :(1-8): (MO —m™ )]
It is convenient to change the superscripts m and i, used for the derivation of the
dilute concentration factors, to 0 representing the matrix and r representing the
inhomogeneities. Such notation allows for the homogenization of more than one
inhomogeneity embedded in the matrix.
The total strain inside the inhomogeneity 2 as a function of the external load &°
(or equal macroscopic strain E) is then

ECV =[1+8: MO (LY -19)[ " E= A :E (3.16)

where E0) is the strain in the rth phase, and if r attains the value 0, we get the strain in
the matrix. The previous equation can be written using the index notation as
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EV = AlE, (3.17)
The total stress inside the inhomogeneity Q2 as a function of the external load ¢°
(or equal macroscopic stress X) is

20 =[1+8: MO (LD L)z =B" : X (3.18)
which can be written in the index notation as

= =Bls, (3.19)
where the fourth-order tensor B is the stress concentration factor (also called a stress
influence tensor).

3.3 Effective Elastic Properties

A macroscopically homogeneous material may have a heterogeneous
microstructure at the microscopic level. Under certain conditions, the material can be
described at the macroscopic level as homogeneous with spatially constant effective
properties. This means that the microstructure is averaged; this micro-to-macro
transition is called homogenization [5].

The suitable volume for homogenization is called “representative volume
element” (RVE). The representative volume element must be big enough to include
enough non-homogeneities of materials (statistically homogeneous distribution of
the defects or heterogeneities), but small enough to have the stresses and strains
within RVE uniform (size with respect to the analyzed detail of a structure).

3.3.1 Averaging

The macro-stresses and macro-strains, which characterize the mechanical state of
the macroscopic material point, are defined as the volumetric averages of the
microscopic fields:

(o;)=%,; = —[o,(x)dx (3.20)

for effective (average) stress in the volume Q. Employing the divergence theorem
(also known as the Gauss theorem, the Green theorem or per-partes integration in
more dimensions) the macroscopic stress can also be expressed using integrals over
the boundary 0€2 (curve integrals) of the averaging domain € [4]:

1
Y =—|t.x.dA4 3.21
ij ‘Q 5LtIXJd ( )
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The macro-strains are calculated as
<ng> =E; = 7."81.7 (x)dx (3.22)
which can be also expressed as [4]

1 1
E, = mi(“i,j U )dV Y] J'(“inj tum )dA (3:23)

oQ

Often a volume Q of a heterogeneous material consists of n subdomains and a
matrix with volume fractions

‘Qm
) _
Q|

c (r=0,...,n) (3.24)

where r = 0 is used for the matrix itself. Obviously then
3 =1 (3.25)
r=0

where the elastic properties L#) are piecewise constant. In case of such
microstructure, consisting of discrete phases, we have

2= Zn:c(r) = (3.26)
r=0
since
1 1 (& 1 (|7 &
ZU:—IUU(x)dx— Z Iay(x)dx = " I U(x)dx =
Q)Y )|z ) all a7 % ) o2
-3 ) =
r=0
and analogously for the strains, it holds that
E, =3 cED (3.28)
r=0

which means that the total stress (or strain) is the sum of phase stress (or strain) with
the weight c™.
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3.3.2 Effective Elastic Constants

Analogous to the elasticity law on the microscopic level, the effective stiffness
tensor is defined by the linear relation between the macro-stresses and macro-strains:

s, =L7E, (3-29)

ijkl
The interpretation of the effective stiffness tensor as a material property is subjected
to several conditions. It is, for instance, the equality of the average strain energy

density <U> in the volume €2 when expressed by means of the microscopic and
macroscopic quantities [4]:

<U> <; E(r) Ll]k[ E(r)> ;<E(r)>L3§:1 <E(V)> ;E Lze;Zl E (330)

This requirement, known as the Hill condition (Hill, 1963), can also be written in the
form

(o,8,) =0, (&) (3.31)

The relation between the applied (macroscopic) strains and stresses can be
expressed as

3y = z z<’> ZC Lf;},E(’) ZC Lﬁ;,g, AP E =L7E (3.32)

ijmn
r=0

Therefore, the effective stiffness matrix (in the matrix notation) is calculated as
follows:

LY — zc Lo A® (3.33)
Analogously, the compliance matrix can be calculated as

MY = Zn:c(’)M(’)B(’) (3.34)

r=0

It can be proved that

YcA”=1 and DBV =1 (3.35)
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where I is the identity matrix, A and B are strain and stress concentration tensors,
respectively. For a matrix with only one type of inhomogeneity, the combination of
the previous equations results in the following expression:

LY = O L© A© 4 OO A _ L0 0 A© L 0pm (I—A(”):

— O[O A© O (I _c0pAO ) — 1O 4 C(O)(L«» _LO )A(‘” (3.36)
where the quantities with the superscript (0) represent a matrix and the quantities
with the superscript (1) represent an inhomogeneity (also called reinforcement or
defect). Using the same reasoning for the different boundary conditions (loading by
the external load ¢°) and for one type of inhomogeneity, the stiffness tensor can be
derived as

LY = [M“) +c(°)(M(°) —M“)):B“’) ]" (3.37)

3.3.3 Voigt and Reuss Approximation

In a homogeneous material, the boundary conditions lead to homogeneous
(spatially constant) stress and strain fields. The first possibility are prescribed linear
displacements u; = ¢;° x; and therefore €° = const = E. The second possibility is loading
by uniform tractions t; = ¢;° n; where 6 = const = X.

In case of a heterogeneous material, the simplest approximation is to assume the
micro-fields to be constant, in accordance with the boundary conditions [4].

These approximations are exact only in one-dimensional special cases of different
materials arranged “in parallel” (Voigt) or “in series” (Reuss). Despite obvious
deficiencies, the simple approximations by Voigt and Reuss bear the advantage that
they yield exact bounds for the true effective elastic constants of a heterogeneous
material. It can be shown that [4]

KI?ZUSS < Keﬁ < K{%igt (338)
and
GI?ZUSS < Geﬁ < G\?‘Zigt (339)

3.3.3.1 Voigt Approximation

If according to Voigt (1889) the strains inside a volume 2 of a heterogeneous body
are taken to be constant (¢ = E = const), it is obvious that the influence tensor is for
Voigt approximation is A = 1. The effective stiffness matrix (or tensor) is then
approximated as follows:

eff
L Voigt

—L)=3 L (3.40)
r=0
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In the special case of discrete phases of an isotropic material the above
approximation leads to the effective bulk modulus

Ky =3 K" (3.41)
r=0
and shear modulus
Gl = G" (3.42)
r=0

However, if one of the phases is rigid (e.g., L() — o) one obtains L¢ — o from the
Voigt approximation.

3.3.3.2 Reuss Approximation

Analogously, a constant stress field is assumed in the approximation according to
Reuss (1929) (0 = X = const), which corresponds to B = 1. The effective compliance
matrix (or tensor) is then approximated as follows [4]:

MY, =(M) =3I M” (3.43)
r=0

In the special case of discrete phases of an isotropic material the above
approximation leads to the effective bulk modulus

n (1)
L _ye (3.44)
K]?Zuss r=0 K(")

and shear modulus

1 n o)

_ (3.45)
6z, &

However, in case of a matrix containing cavities or cracks the vanishing stiffness
(e.g., LO — 0), leads to Lef — 0.

3.3.4 Dilute (Non-Interacting) Defect Distribution

The simplest situation for modeling is when the inhomogeneities or defects are so
dilutely distributed in the homogeneous matrix that their interaction among each
other and with the boundary of the RVE can be neglected (“dilute distribution”) [4].

As illustrated in Fig. 3.3, each inhomogeneity can be considered in an unbounded
domain, subjected to a uniform far-field loading € = <e¢> = E or 0’ = <0> = X. The
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characteristic dimension of the inhomogeneities therefore has to be small, compared
to their distance or to the distance from the boundary of the RVE. Although the
solutions obtained under these idealizations are valid only for very small volume
fractions (c() << 1) they form the basis for important generalization [4].

8°or g°

Fig. 3.3: Model of dilute phase distribution [4]

In case of an ellipsoidal inhomogeneity the strain inside the inhomogeneity Q() is
constant and given by the influence tensor A(), which is calculated for each phase
separately as

Al = [I+S(°) M© :(L(r) 1O )]—1 (3.46)

dil

where the Eshelby tensor (or matrix in engineering notation) depends on the matrix
material.

3.3.5 Mori-Tanaka Model

The approximation of a dilute distribution of non-interacting defects is equivalent
to the assumption that in a sufficient distance from each defect the constant strain
field € or stress field 0% of the external loading prevails. This assumption is the
starting point for a refinement of the model to account for an interaction of
inhomogeneities (defects) [4].

<e¥or <a?

Fig. 3.4: Interaction of inhomogeneities in the Mori-Tanaka model [4]



STIFENESS HOMOGENIZATION 39

In the Mori-Tanaka model (1973) the strain or stress field in the matrix is, in a
sufficient distance from an inhomogeneity, approximated by the constant field
<e>Mor the average stress <o>M as illustrated in Fig. 3.4.

The loading of each phase then depends on the existence of other defects via the
average matrix strain <e>M = EO or the average matrix stress <o>M = Z0).
Fluctuations of the local fields are neglected in this approximation.

In the view of the idealized consideration of a single inhomogeneity in an
unbounded matrix, subjected to effective loading <e>M or <o>M, the Mori-Tanaka
model formally equals that of a dilute distribution and allows the application of the
already known concentration tensors from the dilute distribution model, A4, to
represent the average strain in inhomogeneity [4]:

EY) = AW E© (3.47)

dil

In order to determine the effective material properties the average defect strain needs
to be represented as a function of the macroscopic quantities € = <e> = E or
ol =<0o>=1X

The total macroscopic strain is then

E=cOE® +Y ED — O EO L3 o0 A0 O —
> >0y

r=1

- (c(” 1+ Zn:c('> AD ]E(O)
r=1

(3.48)

For multi-phase materials consisting of a matrix (superscript 0) into which n
inhomogeneity phases are embedded, the Mori-Tanaka models are based on the
following relations:

E® A0 g (3.49)

T ARMT

where
A = (c(‘” 1+ " qugj ! (3.50)
r=1

is the Mori-Tanaka strain concentration factor. The strain in the individual
inhomogeneities is then

EW = AW g0 Z A0). A0 . (3.51)

dil * dil * MT -

Analogously the stress concentration factor for Mori-Tanaka method takes the form

BO - (c«» 1430 Bg;g] - (352)
r=1
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and the stress in the individual inhomogeneities is

x =B x@ _gl).BY . x (3.53)

dil

The effective macroscopic elastic tensor is obtained as

Le// _zc L(r) A(r)_c L(O) A +zc L(r) .

r=0

= (c(” LO + Zn:c(’> L ;Aggj A
r=1

drﬂ : A(O) =
(3.54)

and the compliance elastic tensor as

MY = Zn:c('> M :B" =cOM®:BY) + Zn:c('> M :BY): B =

=0 ! (3.55)

( (0)+zc M Bdﬂ] Bg\(/)lzf

The Mori-Tanaka model, in contrast to the model of a dilute distribution, correctly
covers the extreme cases of ¢ = 0 and ¢ = 1 (corresponding to homogeneous
material) and therefore can formally be applied for arbitrary volume fractions c(") [4].

In the special case of an isotropic matrix which contains isotropic spherical
inhomogeneities the Mori-Tanaka model vyields, irrespective of the spatial
arrangement of the phases, an isotropic overall behavior with effective elastic
constants. It is because the Eshelby tensor can be decomposed to its volumetric and
deviatoric part. Using the equations (3.04), (3.51) and (3.55), which can be written in
slightly different way, we get

¢ L<°>+2c 'L Al
LY = (3.56)

I+Zc dﬂ

which can be decomposed to volumetric and deviatoric components as follows:

COBKOTL, + 2G<°>1D)+ ZC(”( KL, +2G71,): AY)
3K, +2G71, = (3.57)

I, +1, Zc ")

where also the dilute strain concentration factor can be further decomposed as
follows:
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Al =148 MO (LY -LO)] "=

1
- 3.58
. (ol + L) 3K KO, +2(6" -Gt 558)

391, +2G1,

+1

Vv D

and since the volumetric and deviatoric components are independent of each other,
the effective bulk modulus can be, after a simple manipulation with the previous two
equations, expressed as

-1
no . K™
KO 4 E c()[(({1+ao( (0)—1]}

K9 — r=l . — (359)
0) N .0 K"
c +;c {I_FOCO(K(O) lﬂ
and the effective shear modulus as
-1
n . . G(")
VGO 4+ ZC( el {1 + ﬁO(G(O) —lﬂ
of _ r=l - (3.60)
n (r)
(0) ") G"
c +;c {Hﬁo(G(o) 1ﬂ
where
(0) (0) (0)
Jo_ 3K ad U 6(K© +2G60) G.61)

3k + 4G 53k +4G0)

The Mori-Tanaka theories are based on the assumption that the shape of the
inhomogeneities can be described by ellipsoids. In porous or cellular materials with
high void volume fractions, the deformation at the microscale takes place due to
bending and buckling of the cell walls (Gibson and Ashby, 1988), which implies
changes of shapes of the voids. Such effects are not described by Mori-Tanaka
models, which, consequently, tend to overestimate the effective stiffness of the
cellular materials by far [5].
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4 Strength Homogenization

Due to the assumed elastic linear behavior of the RVE, all the imposed work is
stored at each point as an elastic energy density:

We:lczazlssz:lG:M:G (4.01)
2 2 2

which can be decomposed in the volumetric and deviatoric part as follows:

w, :%amgV +%s e=W,, +W,, (4.02)

where the deviatoric part

:ls:ezis:s (4.03)

) 4G

is assumed to cause the failure and it is proportional to so called second invariant of
the stress deviator, J,, where:

J,==s,5. and then W, =2GJ,(o) (4.04)

i 2
The invariant J> can be written using the Mandel notation as

J, :;sTs (4.05)

4.1 Quadratic Strain Averages

The expression for the quadratic average of the deviatoric strain field over a
general phase r can be derived using the Hill's lemma

1 1 . 1 .
U= [ B L B )= B L (B )= B, L (406

expressing the equality between the average strain energy density <U> in the RVE
when expressed by means of the microscopic or macroscopic quantities [4] the
following equation is obtained:
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E:L” :E :éja(x):L(x):a(x)dx (4.07)

The local strain £(x) can be then decomposed into its volumetric and deviatoric part
(causing the failure):

E:LY :E= gl)I e(x):[3K (x)1, +2G(x)1,]: e(x)dx (4.08)

;

which can be after projection of strain in each phase into its volumetric and
deviatoric part written as

E:LY : z j 3K, Ve, +2G e (x):e( (x)dx (4.09)

\ Q

To extract the deviatoric part from the expression it is convenient to differentiate the
whole equation with respect to G(. The volumetric part after the differentiation
vanishes and we obtain

r=0 ()

eff
o= oY (20 (e () de (4.10)

r= 0 Q"
and after a simple manipulation

n

1. oLY Qv

E =
2 aG" Q| Qv

[ 20, (x): 2%, (x)dx (4.11)

r=0 )

the equation can be even more simplified as follows

1 oLY .1 ) )
EE aG(r) E_C()Q(r) J‘a(de)v( ) a(de)v( )dX (412)

fo1S2l

The quadratic average of the deviatoric strain field over a general phase r is defined
as [1]

r 1 1 r r
G g ] e e @1y

and using the previous equations it can be also expressed as

== 1 oL”
(r) _
adev _\/4C(r) E: aG(,) ‘E (414)
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The related quadratic average of the deviatoric stress field (see the expression for J>)
is used as an estimate for deviatoric stress peaks [1]:

ol = | [ L ()5 (x)dx =267, (4.15)
Q7| 42

where s(x) denotes the field of the deviatoric stress tensor.

Assuming the elasto-brittle approach, the elastic behavior prevails until the
quadratic deviatoric stress averages over each of the phases remain below a critical
strength [1]:

6" <o (4.16)

Y dev — O-dev,crit
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5 Homogenization with Coated Particles

This section is devoted to the evaluation of the constraint constants for coated
particles, relating the induced strain to the eigenstrain in individual phases, a® and
p®, and obtaining the effective elastic properties. The spherical inclusion, with a thin
interlayer, embedded in matrix is considered for the evaluation. This is an enormous
simplification and it is also a good model for randomly oriented inhomogeneities,
such as particles embedded in the mortar paste. Only the formulas needed for the
derivation of a® and f® are provided in this thesis, the theoretical background can be
found in [16].

Motivated by Eshelby’s observations, Luo and Weng [16] undertook a similar
study to find the elastic field in the inclusion (grain) and coating, which is embedded
in an infinitely extended matrix. They restricted their consideration to the case of a
three-phase, spherically concentric solid.

The whole procedure for determination of the constraint constants, a® and p®
representing the grain, a©@ and p© representing the coating and finally a®™ and pm
representing the matrix, was taken from [16]. All the phases, grain, coating and
matrix, are represented by bulk modulus K® and shear modulus G®. The geometry
is described by the radius of a grain a and radius of its coating b, as depicted in the
following figure:

Fig. 5.1: A three-phase composite spherically concentric solid

The superscript g stands for the grain (or the inner inclusion), ¢ stands for the coating
and superscript m is used in quantities describing the surrounding matrix.

The parameter ¢ is defined as ¢ = (a / b)? and it has a physical meaning of the
volume fraction of particles in a two-phase composite. The hydrostatic and deviatoric
transformation problems are treated separately.

The solution of Luo and Weng is based on the equation for the general
displacement field in spherical coordinates. The integration constants are found
using the continuity conditions and equilibrium of stresses on the interface of
individual phases.
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5.1 Hydrostatic Part

A theoretical background for obtaining the following formulas can be found in
[16] from which only the needed expressions for constraint constants are presented
here. The constraint constant for grain a® is calculated as

a® =3KD|(3K9 +4G™ )-4c(G™ -G/ p (5.01)
where c was defined as c= (a/b)3 and p is

p=(3K® +4G )3k +4G"™ )-12¢(K® - K )(G™ -G) (5.02)
The constrain constant for the coating of a grain is obtained as

a(C) — _4CK(g) (G(m) _G(C) )/p (503)

5.2 Deviatoric Part

As in case of the hydrostatic constraint constants a®, the derivation of the
expressions for the deviatoric constraint constants f® is, together with a theoretical
background, provided in [16]. Again, only the needed formulas are presented here.

The deviatoric constraint constant for the grain can be found in the form

21

B =a - St (5.04)
and for the coating as
573
G S Y (5.05)

5(1-2v@) 1-c

where the constants a; and a, can be calculated as

(“‘ ] -R" (5.06)

a,

and the terms b; and by, needed for the calculation of the deviatoric constraint
constants of coating, can be found as
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>

*|=E"'FK'HR™
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o

~

The individual matrices needed in the previous equations can be obtained as

! 6v© 3 54y
1-2v® 1-2v®
7—4v©

1 1-2v@ =2 2

E=
(c) (c)
| 3v | D —2(5—v’ )
1-2v© 1-2v©
7+ 20 2(1+v©)
| 1-2v©@ 1-2v©
| 5—4v™
3 R
1-2v™
-2 2
F=| 126" —2(5-v™)G™

- Go l—oym G©

8™ 2(1+v™)G™

| G(C) 1_2‘/("1) G(C) |

”1 6@
12w ®

H=
74y
-2 ®
K=GE'F

R=P+QE'FK'H

where

(5.07)

(5.08)

(5.09)

(5.10)

(5.11)

(5.12)
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6y’ 3 5—4v© |
1 o e
1-2v® ¢’ (1—2v(°'))c
oo (5.13)
o) o 2
12y © o c
. 3V(g)
1-2v®
b (5.14)
! 7420
C1-2v®
and finally
e 12 2(5-v©) ]
G 1-2v©@ 3 (1—2v(°'))c
0- (5.15)
G® ’ ’
L Tt s 2(1ev)
| 1-2v© ¢’ (1—2v(°'))c_

5.3 Modification of Mori-Tanaka Homogenization

For the calculation of the effective moduli, the formulas for spherical inclusions
developed in the chapter 3 can be used in a slightly modified form. The effective bulk
modulus can be expressed, according to Mori-Tanaka scheme, as

-1

n (r)

(0) g 0 (") g () n| K
YK +Zc K {1+a (K(O)_lﬂ

K = - . (5.16)

n K(’”)
¥+ ZC(r) {1 +a"” (K(O) - lﬂ
r=1
and the effective shear modulus as
-1
n (r)
OGO +Zc(r)G({l N ﬁ“{g«» _lﬂ
off _ r=l (517)

-1
n (r)
(0) ) n| G
c© +Z:]:c {Hﬁ (G(O) —lﬂ



HOMOGENIZATION WITH COATED PARTICLES 49

where the constraint constants a® and p® differ for the phases within the coated
grain (inclusion) and those having no coating. For the grain and coating, the
constraint constants presented in the previous sections of this chapter have to be
used. In case of the particles without coating, the constraint constants a® and p® can
be simply substituted by ap and po, which are dependent only on the Poisson’s ratio
of the surrounding matrix, as defined in the chapter 3.



PART II:
CALCULATIONS
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6 Introduction to Cocciopesto Mortars

Air lime based mortars harden through drying and carbonation of so-called slaked
lime, Ca(OH), that transforms into calcite, CaCOs, in presence of atmospheric COs.
In hydraulic mortars, this hardening is supplemented by chemical reactions between
calcium hydroxide and reactive silicates and aluminates in the presence of water.
These minerals are not present in limestone in the sufficient quantities and therefore
they must be added in form of pozzolans.

Hydraulic limes have more favorable properties, mainly higher strength [6]. The
term 'hydraulic' is now used internationally to describe cements and other binders,
which set and harden as a result of chemical reactions with water and continue to
harden even if subsequently placed under water [7].

Pozzolans are able to react with the calcium hydroxide at ambient temperature to
form hydrated calcium silicates and develop suitable mechanical strengths. In fact,
the pozzolan-lime reaction is also a hydraulic reaction which main hydration product
is C-5-H gel, like in Portland cement [6].

The use of mortars based on hydrated lime and brick dust dates back to the most
ancient times. Phoenicians were probably the first ones to use mortars based on
hydrated lime and crushed or dust bricks, followed by all other people who were in
contact with them. The Romans used this type of mortar in every part of their
empires whenever pozzolanic materials were not available and a mortar insoluble in
water was needed. They certainly were ignorant of the chemistry of mortars, but they
knew by experience that the brick dust or pebble played a very important role in the
mortar consistency and strength. The use of crushed bricks, particularly brick dust, in
the preparation of mortars based on putty lime has been interpreted in the present
time as an alternative use to other pozzolanic materials [9].

The specific hydraulic character of the crushed brick-lime mortar is attributed to
the adhesion reactions occurring at the ceramic-matrix interface, on the calcium
hydrate content of the mortar and the dimensions and type of ceramic [8].

Fig. 6.1: Hagia Sophia mortar sample [12]
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Reactions between the lime and any pozzolanic material take place if the
pozzolanic material is finely ground in order to make a large, specific surface, and
hence a large contact between the two materials. When the joint thickness becomes
greater than 40 mm (70 mm in case of Hagia Sophia in Istanbul), the size of the brick
pebbles increases even up to 25 mm and the pozzolanic reaction, if any, can take
place only along the external border of the pebble [9].

Clay minerals in the clay bricks, composed mainly of silica and alumina, present a
sharp pozzolanic activity when heated at temperatures in the range of 600-900°C and
ground in sufficient fineness. During the thermal treatment, silica and alumina lose
the combined water, leading to a destruction of the crystalline network. Silica and
alumina remain in an unstable amorphous phases that could react with hydrated
lime and water, producing pozzolanic products [10].

The lime makes the interfacial surface alkaline and causes chemical reaction. The
penetration of lime into the ceramic and the consequent reaction, transform the
microstructure of the ceramic by reduction of pore radii [8].

Mortar samples also show self-healing effects and proved to be resistant to
continuous stresses and strains due to the above-mentioned presence of the
amorphous hydraulic formations (C-S-H) which allows for greater energy absorption
without initiations of fractures and explains the good performance of the historic
composites [11], [12].

Fig. 6.2: Fragment of pottery in cocciopesto with thin layer of C-S-H [15]

Based on the literature study, it seems that no one has ever tried to estimate the
properties of cocciopesto mortars using micromechanical modeling. Two works [1]
and [27] provided an inspiration for developing micromechanical models. These
works deal with composite materials, composed of the matrix, voids and aggregates
and exploit the method of Mori-Tanaka (Mori and Tanaka, 1973) to estimate the
effective stiffness and strength of the composite. Even though there are many
simplifications in these models, the results quite well correspond to the available
experimental data and therefore they should be applicable to the mortars with
crushed bricks as well.
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7 Calculation without C-S-H Gel Coating

Based on a comprehensive literature study, e.g. [22], the mix proportions for the
micromechanical homogenization of the cocciopesto mortar were determined as 4
mass portions of lime matrix, 3 mass portions of crushed bricks, or other clay
products such as ceramic tiles, and 5 mass portions of siliceous sand in the hardened
mortar.

This composition should be similar to the historic mortars described by, for
instance, Vitruvius. The crushed bricks should be responsible for the hydraulicity,
and therefore improve the mechanical properties of the mortar, without need for the
modern artificial substances or industrial by-products such as metakaolin or fly ash.

Table 7.1: properties of individual components used for calculation

densit Young's | Poisson's| tensile Solifce
y modulus ratio strength
kg/m® MPa - MPa -
lime 1900 1800 0.25 04 [24]
siliceous sand 2 600 70 000 0.17 48 [25]
clay brick 1600 2400 0.17 32 [23]
voids - 0.001 0.001 - -

The porosity of hardened mortar is varying according to the environment and
technology. For the calculations, the porosity was considered to be 30% of the
volume, if not specified otherwise.

The mechanical properties of the individual components, considered in the
calculations, are summarized in Table 7.1. The properties of voids are set to be non-
zero to avoid any complications during the computations.

The summary of material properties in Table 7.1 indicates that the “weak”
constituent is the hardened lime matrix, having the tensile strength approximately
0.4 MPa. This value can vary according to curing time and technology. However, the
value should not be higher than 0.7 MPa, which is still way smaller than the tensile
strength of the other components.

For the calculation of the effective (overall, macroscopic) material properties, the
Mori-Tanaka homogenization technique was used. The representation of randomly
oriented inhomogeneities by spherical particles was chosen, since these should
demonstrate the trends in behavior as the best ones.

All the calculations presented in this work were done using software MATLAB.
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7.1 Calculation of Effective Stiffness without C-S-H
Gel Formation

The final stiffness (Young’s modulus) of the mix is strongly influenced by the
porosity of the hardened mortar. For illustration see the following figure, where the
dependence of the mortar stiffness and Poisson’s ratio on the porosity is depicted:

x 10° dependence of mortar stiffness on porosity
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Fig. 7.2: Dependence of effective stiffness and Poisson’s ratio on porosity of mortar

For the reasonable porosity of 30%, the calculated Young’s modulus of the mortar is
Edf =1 621 MPa and Poisson’s ratio v¢f = 0.201. These values yield the effective shear
modulus of the mortar G¢f = 675 MPa.

The calculated effective stiffness is within the range provided in literature. The
stiffness of historic cocciopesto mortars varies according to their porosity and content
of the individual constituents - the values of Young’s modulus can be lower than
1000 MPa (e.g. [13]) and also higher than 3 000 MPa, corresponding to the stiff
cocciopesto mortars with high pozzolanity and low porosity (e.g. [14]).

The stiffness of the mix is decreasing with the increasing content of crushed
bricks. The variable parameter a (brick content) has a meaning of the mass portion in
the mix (lime : brick : sand =4 : a : 5). The calculated trend is shown in the following
figure:
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x 10° dependence of mortar stiffness on crushed brick content
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Fig. 7.3: Dependence of macroscopic mortar stiffness on content of crushed bricks

7.2 Estimation of Strength without C-S-H Gel
Formation

The quadratic average of the deviatoric stress within the weakest phase (lime
matrix) was estimated in order to determine the effect of crushed bricks in the
cocciopesto mortar. Such approach was inspired by estimation of the compressive
strength of a cement paste and mortar by [1].

dependendce of deviatoric stress in matrix on crushed brick content
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Fig. 7.4: Dependence of quadratic average of deviatoric stress in mortar on content of crushed bricks

First, the constant macroscopic strains (unit normal strain €11 and unit shear strain
e12) were assumed as loading parameters. By addition of the crushed clay bricks in a
reasonable amount into the mix the deviatoric stress within the mortar phase
decreased. It should make the lime matrix less vulnerable to damage. The
dependence of the quadratic deviatoric stress average within the matrix phase on the
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brick content is depicted in the Fig. 7.4. The value of the deviatoric stress within the
matrix, dependent on the brick content 4, is divided by a reference value - the
deviatoric stress within the matrix for the brick content a = 0, denoted as o™matrixey (0).

The stiffness of bricks has also its influence - Fig. 7.5 shows the dependence of the
ratio [|omatrixgey(a) || / || omatixgev(0) || on the brick content a for different stiffness of
bricks. The values of elastic moduli Ebrick are not realistic and are used only to
indicate the trend:

dependence of deviatoric stress in matrix on crushed brick content loaded by o, #0andc,, = 0

1.9 =
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Fig. 7.5: Dependence of quadratic average of deviatoric stress in mortar on content of crushed bricks
for different brick stiffness

The sample was loaded be a combination of normal and shear stress. This loading
was chosen since it should be the critical one and it should simulate the loading
induced during earthquake, to which the cocciopesto mortars should resist better
than conventional mortars based on lime.

It can be seen in Fig. 7.5 that the more compliant bricks are added, the more
deviatoric stress in the matrix phase can be expected. Also, the addition of voids, as
the most compliant phase, increases the deviatoric stress in the matrix.

Due to the nature of the formulas used in homogenization according to the Mori-
Tanaka scheme, it turns out that the rate of relief, || O"dev(a) || / || 0"dev(0) |, in the
individual phases is the same for all inclusions and inhomogeneities embedded in
the matrix. In the case of coccipesto mortar, the estimated increase of deviatoric stress

in the matrix, sand and brick particles with an increasing porosity can be seen in Fig.
7.6.




CALCULATION WITHOUT C-5-H GEL COATING 57
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Fig. 7.6: Dependence of quadratic average of deviatoric stress in individual phases on porosity
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8 Calculation with C-S-H Gel Coating

It is reported in many papers, dealing with the cocciopesto mortars, that the thin
layer of C-S-H gel forms at the lime - brick interface if the bricks are made of clay and
are burnt at the appropriate firing temperature (which is about 600-900°C [21]). The
C-S-H gel is an amorphous phase with properties, responsible for some
extraordinary properties of Portland cement concrete.

The thickness of the C-S-H layer at the brick interface is assumed to be about
20 pm for the calculations; the backscattered electron image of the interface can be
seen in the following figure [17]:

AreN Snot Ml Bet W B
16:00% 6.0/ 1200x" BSE6S» IXTE-HAM

Fig. 8.1: Brick interface (I) between lime matrix (L) and brick aggregate (B) [17]

The estimation of the C-S-H gel thickness on the brick interface is one of the
deficiencies in the modeling, however the thickness of 20 pm should be in a
reasonable range. Another uncertainty is the elastic stiffness of the gel. There are
basically two types of the gel present in Portland cement. As reported in the
literature, e.g. [18], these are the low and high-density C-S-H gel. For the calculation
of the effective properties of cocciopesto mortar, the properties of the low-density
C-S-H gel were considered.

The nanoindentation results showed that the low-density C-S5-H phase has a mean
stiffness of about 22 GPa [19]. The density of the gel in calculation was considered as
2000 kg/m3, as suggested in [20] and Poisson’s ratio as 0.20.

It is assumed in the calculations that 50% of the C-S5-H gel occupies the voids, 30%
of the C-5-H gel is assumed to consume the part of the matrix and the remaining 20%
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is assumed to consume the part of the brick phase. These values are estimated, but
they do not have any significant influence on the final results. Despite the uncertain
material properties of the gel phase, the model is capable of predicting trends;
however, it cannot predict the exact values.

For the coated inhomogeneities, the procedure suggested by [16], which is briefly
described in this work (in the chapter 5), was used. As previously mentioned, the
MATLAB software was used for all the calculations.

8.1 Calculation of Effective Stiffness with C-S-H Gel
Formation

All the calculations presented in this chapter, if not specified otherwise, are done
assuming the size of the brick particles as 1 mm in diameter. It was assumed that the
C-S-H gel coating significantly stiffens the brick particles. This should result in an
increase of the cocciopesto mortars stiffness if the coating is created, even if the layer
is relatively thin in comparison with the diameter of the brick particles.

For the same composition of the mortar, the calculated Young’s modulus of the
mortar increased from E¢f = 1 621 MPa to E¢f = 1 825 MPa, if the formation of the
C-S-H gel on the interface of brick particles was considered. The effect of the C-S5-H
coating on the effective stiffness of the mortar can be clearly seen in the following
figure:
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Fig. 8.2: Dependence of the effective stiffness on content of brick particles in mortar
The effective stiffness of mortar increases with a ratio of the coating thickness to

the size of brick particles. It is indicates in the Fig. 8.3, where the dependence of the
elastic stiffness on the thickness of the C-S-H gel coating is depicted:
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x 10° dependence of mortar stiffness on thickness of brick coating
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Fig. 8.3: Dependence of effective mortar stiffness on thickness of C-S-H gel coating

The ratio of the coating thickness to the size of brick particles also increases with
the decreasing size of the brick particles. While the effective stiffness decreases with
the addition of the crushed bricks of a big diameter (brick pebbles), the opposite is
true for the tiny particles (brick dust). This can be seen in Fig. 8.4, showing the
dependence of the effective stiffness on the brick content for relatively small and big
crushed brick particles.
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Fig. 8.4: Effective stiffness of mortar with coated and uncoated brick particles

It can be concluded that the C-S-H gel formation on the interface of the brick
particles results in an increase of the effective stiffness of the mortar mix. This
increase in stiffness is higher if the ratio of gel thickness to size of brick particles is
relatively high. This can be ensured by the addition of the brick particles having
smaller diameter.
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8.2 Estimation of Strength with C-S-H Gel Formation

The estimation of strength, based on the calculation of the deviatoric stress
average in the individual phases, was done as in case of mortar without C-S5-H gel,
according to the procedure used in [1].

The increase or reduction of the deviatoric stress in matrix is strongly dependent
on the coating thickness to size of brick particles ratio. If the added crushed brick
particles are smaller, the effect of C-S-H gel coating becomes greater and the
deviatoric stress within the matrix phase significantly reduces. Therefore, it seems
reasonable to add a certain amount of the finely crushed bricks into to the mix, since
it should result in the decrease of the deviatoric stress within the matrix, as indicated
in the following figure:
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Fig. 8.5: Dependence of deviatoric stress in matrix for different size of brick particles
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9 Calculation with Multiple Brick Fractions

If the C-S-H gel coating is formed, the addition of the crushed brick particles
having a small diameter should result in an increase of the effective stiffness of the
mortar mix, and decrease of the deviatoric stress within the matrix. These
phenomena are shown in Fig. 9.1 and Fig. 9.2. The lime matrix to crushed bricks to
sand ratio 4 : 3 : 5 in the hardened mortar, having the porosity of 30%, was used.
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Fig. 9.1: Dependence of mortar stiffness on diameter of brick particles
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Fig. 9.2: Dependence of deviatoric stress increase in matrix on diameter of brick particles

For the conservation mortars a low elastic modulus and sufficient strength are,
together with ductility, usually required [26]. The proper composition of the mortar
can be prepared by using multiple fractions of crushed bricks. The fine brick particles
in the mix should ensure the decrease of the deviatoric stress in matrix, and therefore
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increase the mortar strength. On the other hand, the bigger fractions decrease the
Young's modulus and make the mortar more compliant.

The graph in Fig. 9.3 shows the dependence of the deviatoric stresses ratio on the
amount of fine brick fraction within the brick particles. The quantity | omatrixe, ||
stands for the deviatoric stress in matrix, corresponding to the given amount of fine
brick particles substituting the big ones. ||omatixge,(m=0) || represents the deviatoric
stress in the matrix if the mix does not contains any crushed bricks at all.
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Fig. 9.3: Dependence of deviatoric stress in matrix on diameter of brick particles

It is clear from Fig. 9.3 that for the deviatoric stress decrease there should be more
than 35 % of fine particles of crushed bricks (diameter 0.125 - 0.25 mm) and less than
65% of brick pebbles (diameter 2 - 4 mm) in the mix. However, the prevailing fine
crushed brick fractions cause an increase of mortar stiffness (Fig. 9.4)
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Fig. 9.4: Dependence of mortar stiffness on diameter of brick particles

It can be concluded from the previous figures that the reduction of the deviatoric
stress in matrix is coupled with an increased effective stiffness.
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9.1 Crushed Brick Size Optimization

A fraction of crushed bricks can be optimized towards a bigger compliance or
bigger strength. This chapter provides an example of the crushed brick fractions
optimization towards a better performance.

The mortar composition is considered, as previously, with the lime matrix to
crushed bricks to sand ratio 4 : 3 : 5 in the hardened mortar, having the porosity of
30%. First, a crushed brick fractions used in historic mortar, found in a Byzantine
ancient structure and investigated by [9], was considered in calculation. Then the
amount of individual crushed brick fractions was modified in such a way that the
effective stiffness of the mortar is not significantly increased and the deviatoric stress
in matrix is reduced.

It should be noted that only the fractions of crushed bricks are corresponding to
the mortar samples from the Byzantine structure described in [9], not the ratio of
mortar constituents. In addition, the biggest fractions of crushed bricks, exceeding
4 mm were eliminated. However, the indicated trends should be valid for any similar
mortar composition, based on lime, crushed bricks and sand, having a reasonable
porosity.

It was found in [9] that the investigated Byzantine mortar had a crushed brick size
distribution approximately as follows:
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Fig. 9.5: Approximate distribution of crushed brick size in ancient Byzantine structure



CALCULATION WITH MULTIPLE BRICK FRACTIONS

65

Such distribution of crushed brick particles should, using the micromechanical
approach and assuming the above mentioned mortar composition, yield the effective
mortar stiffness E¢ff = 1909 MPa.

The modification of the brick particles distribution was focused on reduction of
deviatoric stress in the matrix, while increasing the effective mortar stiffness as little
as possible. The distribution of brick particles in the modified mortar can be seen in
Fig. 9.6. The medium-size particles were eliminated and only the small particles,
ensuring the decrease of deviatoric stress, were combined with particles of big size to
ensure a relatively low increase of the effective mortar stiffness.

The fractions 0.063 - 0.125 and 0.125 - 0.250 mm in diameter were chosen to
represent the small brick particles, because these fractions are reasonable with
respect to the production possibilities. On the other hand, the fraction 2 - 4 mm
representing the big particles can be substituted practically by any size of crushed
bricks above 2 mm without influence on the results.
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Fig. 9.6: Modified crushed brick size distribution

The calculated effective stiffness of mortar, having the modified distribution of
crushed brick particles, is E¢ff = 2646 MPa. The dependence of the effective stiffness
on brick content, considering the original and modified crushed brick size
distribution, is depicted in the following figure:
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Fig. 9.7: Dependence of mortar stiffness on brick content

The increase of mortar effective stiffness is rather high. However, the increased
effective stiffness is balanced by a quite significant reduction of the deviatoric stress
within the matrix, ensuring the bigger mortar strength. The dependence of the
deviatoric stress in the matrix on crushed brick content, for the original and modified
size distribution of crushed brick particles distribution, can be seen in the following
figure:
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Fig. 9.7: Dependence of mortar stiffness on brick content
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Conclusion

The assumption of C-S-H gel formation on the matrix-crushed brick interface has
a major influence on behavior of the cocciopesto mortars. According to the
calculations based on micromechanical approach, the C-S-H gel coating plays a
significant role, especially in case of small crushed brick fractions.

The main factor influencing the behavior of the crushed bricks (or other clay
products, such as tiles or pottery) in a mix is the coating thickness to brick fragments
size ratio. With the increasing ratio, ensured by an addition of the small crushed
brick fractions, the mortar becomes stiffer and the deviatoric stress in a lime matrix
decreases. Since the lime matrix is considered as the weakest constituent, the
reduction of the deviatoric stress should result in an increase of the mortar strength.
It is assumed that mainly the deviatoric stress component is responsible for the
failure of the material and therefore the stress deviator, J>, was chosen as an adequate
indicator.

The proposed model also confirmed the negative effect of voids in lime mortars,
since the increased porosity causes quite large increase of the deviatoric stress within
the lime matrix and makes the mortar more compliant.

It was also found that the addition of crushed bricks, having a bigger diameter,
should make the mortar more compliant and cause an increase of the deviatoric
stress in the matrix. The addition of crushed bricks of a small size results in the
opposite behavior - the mortar becomes stiffer and the deviatoric stress in the lime
matrix is reduced.

However, the results provided in this work, cannot be considered as exact because
of a few simplifications and uncertainties in the calculation. The Mori-Tanaka
homogenization technique assumes the materials to behave linearly and it is
expected that the C-S-H gel should have additional positive effect on the mortar
strength, if the non-linear behavior were considered. The thickness of the C-S-H gel
coating, 20 pm, cannot be taken as the exact universal value, since it is dependent on
the chemical composition of the individual mortar constituents. There is also
uncertainty around the reduction of porosity, if the C-S-H gel is formed.

Despite the above mentioned simplifications, the model should be able to
correctly predict the trends and serve for the optimization of the mortar towards the
desired properties.
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