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Abstract 
 
     Cocciopesto is a very old and interesting material, when by a simple mixing of  
crushed bricks with water and lime, we get a mortar of similar properties to modern 
concrete. This quality had already been extensively exploited in the Roman Empire. 
A chemical nature of the processes was unknown to them of course, but they knew 
by an experience that the brick dust had a very positive influence on a consistency 
and strength of the mortar. 
     Nowadays, with a deeper knowledge of the processes taking place in the mortar, 
we come back to the use of this material. We try to re-exploit its amazing properties, 
such as self-healing of cracks, especially for a restoration of historic monuments and 
a protection of structures in seismic areas. 
     The thesis, you are reading right now, is devoted to numerical simulations of 
masonry structures with the cocciopesto mortar joints. It defines an influence of  
the joint thickness and determines the material properties worth changing in order to 
improve the overall behavior of the structure. The above-mentioned goals make this 
thesis unique. 
 
 
Keywords: cocciopesto, pozzolan, crushed brick, C-S-H gel, thick joints, masonry   
                    structures, numerical simulation 
 
 
 
 
 
Abstrakt 
 
     Cocciopesto je velmi starý a zajímavý materiál, kdy pouhým smícháním drcených 
cihel s vodou a vápnem dostáváme maltu obdobných vlastností jako novodobý 
beton. Této vlastnosti bylo hojně užíváno už ve starověkém Římě. Samozřejmě si 
nebyli vědomi podstaty chemických procesů, ale pouhou zkušeností věděli, že 
cihelný prach má velmi pozitivní vliv na soudržnost a pevnost malty. 
     Dnes, s hlubší znalostí procesů probíhajících v maltě, se vracíme k používání 
tohoto materiálu. Pokoušíme se znovu využít jeho úžasných vlastností, jako je třeba 
samo-zacelování trhlin, obzvláště pro restaurování historických památek a ochranu 
staveb v seismicky aktivních oblastech. 
     Práce, kterou právě teď čtete, je věnována numerickým simulacím zděných 
konstrukcí se spárami z malty cocciopesto. Určuje vliv tloušťky spár a stanovuje 
materiálové vlastnosti, které má smysl měnit z důvodu zlepšení celkové odezvy 
konstrukce. Výše zmíněné cíle dělají tuto práci ojedinělou. 
 
Klíčová slova: cocciopesto, pucolán, drcená cihla, C-S-H gel, tlusté spáry, zděné     
                          konstrukce, numerické simulace 
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Hagia Sophia mortar sample [9] 
 

Introduction 

     The term cocciopesto is used for mortars made with a crushed brick or terracotta. 
Sometimes the term “opus signinum” is used instead. The first notes about exploiting 
the cocciopesto can be traced to the times of old Phoenicians and subsequently this 
type of mortar spread among other nations, which were in contact with them. As 
time went, a thickness of the joints increased together with dimensions of the brick 
fragments and an aggregate. Later on, the 
thickness of the joints became even greater 
than the thickness of the bricks. For 
example, the mortar joint thickness was  
70 mm in the Hagia Sofia in Istanbul. The 
reason why this was not satisfactorily 
explained up to these days is not 
surprising. Despite a comprehensive 
research of a literature, there were found no 
numerical simulations focused on a 
characteristic behavior of thick cocciopesto 
joints used in masonry structures.  
     Of course, there are many simulations 
dealing with masonry structures, but the 
problem is that simplifications of the 
models often make observing the joints 
impossible. For example, Zucchini, 
Lourenço (2009) [1] use a homogenization 
utilizing a periodic repetition of the microstructure (masonry bond), which permits 
to establish constitutive relations in terms of averaged stresses and strains. It is very 
useful, because it is then possible to use standard material models and software 
codes for isotropic materials, but it is not possible to study the joints in such a 
homogenized monolithic material. Another example is determining a response of a 
brick-mortar connection by substituting the joints by interface elements as e.g. Lotfi, 
Shing (1994) [2], Gambarotta, Lagomarsino (1997) [3], Lourenço, Rots (1997) [4], 
Senthivel, Lourenço (2009) [5]. Again, it is impossible to capture the behavior of the 
joints, as well as in the case of Brasile, Casciaro, Formica (2007) [6], who described the 
bricks as rigid bodies and the mortar joints as non-linear interface springs. 
     Therefore, one of the main goals of this thesis is to determine the role of the thick 
joints in the behavior of masonry structures, by means of the direct numerical 
simulation. After this, a parametric study of several important material properties of 
the cocciopesto mortar is done. It should help to define which material properties 
influence the overall response favorably and then implicitly set the best mix ratios of 
the mortar. 
     From the reasons mentioned above, this thesis is not improving or extending any 
research or simulation, because there are no similar results available, to the best of 
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our knowledge. Therefore, this work can be considered as a pioneering one in this 
particular issue. 
     The first chapter is devoted to the description of the basic chemical processes 
leading to the extraordinary characteristics of the cocciopesto mortars, and it also 
explains what causes such characteristic properties. The second chapter set the more 
detailed goals of this work. The third one deals with the principle of the finite 
element method, its origin and its properties, but also with elasticity equations that 
help to understand governing equations of FEM, which are included in this chapter 
too. Chapter number four describes a choice of suitable FEM software and its 
material models and solution methods. The fifth chapter works with data from the 
numerical simulations and analyzes them. Finally, the last, sixth, chapter summarizes 
the obtained results and findings. 
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1 Cocciopesto 

     Cocciopesto is well known as a material used for a waterproof lining in ancient 
cisterns and it is used from 2nd century B.C. The Romans used crushed brick 
wherever they needed waterproof mortar and the natural pozzolans were not 
available. Historians as Vitruvius recommended mixing crushed bricks with mortar 
to improve its mechanical properties. In times of Byzantine Empire, the cocciopesto 
mortars ceased to be used only as water insoluble material, but also as joints of load-
bearing structures. A texture of the cocciopesto mortar is shown in Figure 1.1. 
 
 

 
 
Fig. 1.1: Fragments of crushed terracotta in a cocciopesto [10] 
 
 
     Cocciopesto often contains so-called pozzolana as well. Pozzolana can be either 
natural (volcanic minerals) or an industrial by-product (e.g. pulverized fly ash, 
metakaolin) with an amorphous or a partially crystalline structure. Pozzolans 
themselves do not react, and therefore do not harden, after mixing with water. But if 
finely powdered, they can together with water and calcium hydroxide (Ca(OH)2) 
contained in lime mortars, obtain a certain mechanical strength. The reaction 
between lime and pozzolans is actually similar to a reaction in portland cement 
because in both cases an amorphous C-S-H1 (Calcium-Silicate-Hydrate) gel is 
formed. 
 
 

                                                
1 Abbreviated symbols used in the cement chemistry: CaO = C; SiO2 = S and H2O in hydrated cement 
is denoted by H. 



COCCIOPESTO   11 

1.1 Mortars 
     Mortars have two important roles in civil engineering in these days, as well as 
they had a long time ago. First one is to connect structural elements, mostly stones, 
and bricks and second one is a protective function as a plaster of structures. 
     Mortars are generally divided according to the material they are based on (e.g. 
lime, gypsum, clay binders, etc.) 
     Since pozzolanic materials need to be mixed with calcium hydroxide (Ca(OH)2), 
we are going to focus on the lime mortars. The lime used in mortars can be classified 
into two groups. Non-hydraulic (or air) lime, which does not need water for 
hardening, and hydraulic lime. Nowadays, the term hydraulic includes cements and 
other bonding agents, which set and harden as a result of chemical reactions with 
water. 
     The main properties of the cocciopesto mortars, i.e. lime mortars with 
pozzolans/crushed bricks, are the following:  
 

 superior  mechanical strength to lime mortars 
 certain capacity of deformation 
 low resistance to unfavorable climatic conditions 
 scarce presence of soluble salts 
 lower permeability to water than lime mortars [7]  

 
     Generally, we can say that cocciopesto mortars are weaker and more porous in 
comparison with portland cement mortars. These characteristics can be 
advantageous in some cases, mainly due to better compatibility with other building 
materials. This is an extremely important factor when dealing with historic 
monuments. However, as it has been already mentioned, both types of mortars have 
a common component from mineralogical and chemical point of view and it is the 
amorphous C-S-H gel. 

1.2 Chemistry 
     Hydraulic mortars harden by chemical reactions between calcium hydroxide 
(Ca(OH)2) and reactive silicates and aluminates in the presence of water. In natural 
hydraulic limes, the reactive silicates and aluminates are supplied by clay minerals in 
the limestone. Where a hydraulic set (hydraulic set are active clay particles, lime, and 
water) is required in a lime mortar and these minerals are not naturally present, or 
are not present in sufficient quantities, they can be added in the form of the 
pozzolans or the brick powder [11]. 
     The pozzolanic activity of a material is defined as its ability to react with Ca(OH)2, 
in the presence of water. The pozzolanic activity of a ceramic powder depends on the 
chemical and mineralogical composition of the initial clay (a high content of clay 
supports the pozzolanic activity), and the thermal treatment. Furthermore, the final 
characteristics of the ceramic powder that influence the pozzolanic activity are 
mainly the amorphous phase content and the specific surface [12]. 
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     Bricks, or more precisely clay minerals, have a very good pozzolanic activity if 
they are burnt at temperatures from 600 °C to 900 °C and sufficiently ground. The 
temperature higher than 600 °C is necessary to lose water from silica and alumina, 
resulting in a demolition of a crystalline network and these amorphous substances 
can react with water and hydrated lime. However, the temperature cannot be higher 
than 900 °C, because then high temperature crystals are formed. Finally, the 
sufficient grinding is necessary to reach a big specific surface and subsequently big 
contact area between materials. 
 
 

 
 
Fig. 1.2: Limestone pebbles as aggregates in non-hydraulic mortar [10] 
 
 
     In simple non-hydraulic lime mortars, this hardening is supplemented by drying 
and carbonation that is by the conversion of calcium hydroxide (Ca(OH)2) to calcium 
carbonate (CaCO3) by reaction with atmospheric carbon dioxide (CO2) [11]. Then the 
individual particles in non-hydraulic mortar look like simply put together without 
any reaction rims (see Figure 1.2), on the contrary to cocciopesto (see Figure 1.3).  
 

 

 
 

Fig. 1.3: Fragment of pottery in cocciopesto with light reaction rim [10] 
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     The pozzolanic character of the crushed brick mortar is caused by the adhesion 
reactions of physico-chemical character occurring at the ceramic-matrix interface. The 
observed reactions could be attributed to calcium silicate (Ca2SiO4) formations at the 
interface along the brick fragment, acting as the silicate source and the lime, which 
makes the interfacial surface alkaline and causes the chemical reaction. The 
penetration of lime into the ceramic and the consequent reaction transforms the 
microstructure of the ceramic by transforming the pore radii into smaller pores, 
decreasing the total porosity, and augmenting the apparent density. The reduction of 
the pore radii confirms the cementitious character of the mortar matrix, giving high 
strength to the mortar [8]. The chemical principle of the cocciopesto is simply 
summarized in a following scheme. 
 
 
 
 
 
 
 
 
 
 
             
 
 
Fig. 1.4: Summary of chemical principle 
 

1.3 Properties 
     The mortars from Hagia Sofia have relatively high strength together with very 
high durability. These mortars also turned out to be resistant to continuous stresses 
and strains thanks to the presence of the amorphous C-S-H gel at interfaces between 
crushed brick powder and binder. C-S-H gel occurs in the binding matrix as well. 
These properties allow for better energy absorption during an earthquake, without a 
creation of fractures [9].  
     The reaction product fills the discontinuities of the structure, thus eliminating any 
breaks in continuity between the mortar and the brick as illustrated by Figure 1.5. 
Small fragments of brick also seem, in turn, to penetrate the adjacent mortar [13]. 
This transformation matches with the hydraulic character of the mortar matrix, 
providing the mortar high physico-chemical resistance to polluted and marine 
atmosphere [14]. 
     In the case of large sized brick pebbles (even if reaction layers can be detected 
along the contact surface between the binder and the pebbles) the reaction cannot 
penetrate very far into the pebble. Hence, the reaction can only realize a better 
adhesion between the binder and the aggregate [13]. 
 

 

alkaline 
environment 

 
 

Ca(OH)2 = lime  
(lime causes alkalinity) 

 
 
 

activation of silicates by 
alkaline environment 

(source of silicates is a brick 
fragment) 

 
 

chemical reaction 
 
 

products of  reaction fill 
discontinuities 
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Fig. 1.5: Ceramic fragments rounded by reaction rims in the matrix [14] 
 
 
     In addition, there is one more extremely interesting fact about the cocciopesto 
mortars. There were cracks observed by an optical microscope, going through the 
brick fragments and the matrix, which were filled with a secondary crystallized 
material. It actually means that there is something like a self-healing effect, treating 
the damages after an earthquake.  
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2 Goals 

     Goals of the thesis are as follows: 
 
 study the issue of the cocciopesto mortars 
 
 study the principles of the FEM 

 
 choose the appropriate FEM program and solver 
 
 study the computation routines of the chosen FEM program and solver 

 
 determine the influence of the thick cocciopesto mortar joints on the behavior 

of the masonry structures 
 
 investigate the role of the individual material parameters of the cocciopesto 

mortar in the overall structural response 
 
 interpret the results 
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3 Finite Element Method 

     The finite element method is really the famous one in nowadays. Nevertheless, 
this chapter is not dedicated only to the well-known equations, but above all, it 
contains explanations and descriptions of the methods in behind, the principles 
occurring in FEM, its origin etc.  

3.1 Introduction 
     This method was not developed by a single man, but by the participation of many 
researchers during 2nd half of 20th century e.g. R. Courant, S. Levy, M. J. Turner,  
O. C. Zienkiewicz, K. J. Bathe etc. 
     Problem that actually gave rise to this method was that by analyzing the 
individual members, the results were too conservative providing a design with 
bigger and heavier members than was necessary. This procedure was used in civil 
structures, where weight is usually not the main constraint. Analysis of the complete 
structure was demanded by the need for a better estimation of stresses in the design 
of airplanes with minimum factor of safety, and consequently minimum weight, 
during World War 2.  
 
 

 
 
Fig. 3.1:  Analysis of loading by a wind blast [16] 
 

3.2 Principles of FEM      
     The finite element method was initially developed as matrix method of structural 
analysis for discrete structures (trusses and frames). Later, it also extended for 
continuum structures, to get better estimation of stresses and deflections even in 
components with variable cross-section, as well as with heterogeneous and 
anisotropic materials, allowing for optimum design of complicated components.  
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The finite element method is a generalized method, based on conventional theory of 
elasticity (force equilibrium and compatibility of displacements), variational 
principles, and energy theorems and it is applicable to all types of structures – 
discrete as well as continuum [15].  
     This method can produce a huge set of simultaneous equations, which represent 
load-displacement relationship and it is the reason why the matrix notation is ideal 
for computerizing. Therefore, development of numerical methods and availability of 
computers enabled growth of matrix method. 
     Generally, in FEM the actual component is replaced by a simplified model, 
identified by a finite number of elements connected at nodes. Each element has an 
assumed behavior or response to applied loads and the unknown field variables are 
evaluated at the nodes. The finite element method is an extension of Rayleigh-Ritz 
method 2, eliminating the difficulty of dealing with a large polynomial representing a 
suitable displacement field valid over the entire structure.   
     FEM has a very important property. It is based on minimum potential energy 
theorem 3 and therefore it converges to the correct solution from a higher value as the 
number of elements in the model increases. Because a number of elements used in 
model is selected by an engineer, based on the required accuracy of solution as well 
as the availability of computer with sufficient memory, this property ensures that the 
solution is always on the safe side even with lesser number of elements.  
     The Rayleigh-Ritz method and potential energy approach are now of only 
academic interest. For a complex problem, it is difficult to deal with a polynomial 
having as many coefficients as the number of DOF [15]. 

3.2.1 Linearity 

     Linear analysis is based on linear stress-strain relationship and is usually 
permitted when stress at any point is below the elastic limit. In this analysis, linear 
superposition of results obtained for individual loads is valid. 
     In many cases, the mathematical formulations are based on small deflection 
theory. A component with large deflections due to loads, such as aircraft wing, 
belongs to the category of geometric non-linearity. In these problems, geometry of 
the component is redefined after every load step by adding the displacements at 
various nodes to the nodal coordinates, for defining the true geometry to be used for 
the next load step.  
     In some aerospace applications, where the component is designed for single use, 
stress level above yield point, where stress-strain relationship is non-linear, may be 
allowed. In some other cases involving non-metallic components, material may 
exhibit non-linear stress-strain behavior in the operating load range. These two cases 
                                                
2 This method involves choosing a displacement field over the entire component, usually in the form 
of a polynomial function, and evaluating unknown coefficients of the polynomial for minimum 
potential energy [15]. 
 
3 Among all possible kinematically admissible displacement fields (satisfying compatibility and 
boundary conditions) of a conservative system, the one corresponding to stable equilibrium state has 
minimum potential energy [17]. 
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belong to the category of material non-linearity. In these problems, total load on the 
component is applied in small steps and non-linear stress-strain relationship (usually 
represented by the value of Young’s modulus) is considered as linear in each load 
step. These values are suitably modified after each load step, until the entire load 
range is covered. 

3.3 Discrete Elements - 1D   
     A discrete structure is assembled from a number of 1D bar elements.  Nodes are 
chosen at the junctions of two or more discrete members, at junctions of two different 
materials or at points of load application. In 1D element, the axial dimension is very 
large compared to the cross-section and load is assumed to act uniformly over the 
entire cross-section. Therefore, the displacement is taken as a function of x, along the 
axis of the member. The function should be continuous over the entire element with 
no singularities and easily differentiable to obtain strains for calculation of potential 
energy [15]. 
     Strains in the element are obtained as derivatives of the displacement polynomial, 
and therefore they are expressed in terms of the nodal displacements. Stresses are 
expressed in terms of strains, using the physical equations. By equating work done 
by external forces to the work done by internal forces (or internal strain energy) of 
the element and applying variational principle, load-displacement relationship of the 
element is obtained. They represent a system of simultaneous equations in terms of 
nodal loads and nodal displacements [15]. 

3.4 Continuum Elements - 2D and 3D 

     When one of the cross-sectional dimensions (width) is significant with respect to 
the length of the member, while the thickness is very small, it is considered as a 2D 
element. In the case of discrete structures, when each member is treated as a 1D 
element, the choice of the junctions for nodes is clear. However, in the case of 
continuum, which is modeled by 2D or 3D elements, there is no unique finite element 
model for analysis. Each engineer may use a particular number of nodes and a 
particular orientation of elements. Generally, we can say that a model with less 
number of higher order elements (with more than two nodes along edges of the 
elements, i.e. complex, or multiplex elements, for more information see Section 3.4.1) 
will give better results than higher number of lower order elements and it is 
economical in terms of computer memory and time. 

3.4.1 Simplex, Complex and Multiplex Elements 

     Finite elements can be divided into the following groups. The simplex elements 
are those for which the approximating polynomial consists of constant and linear 
terms [18]. They can be obtained by joining of n+1 nodes in nD space. In 1D, it is  
a simple 2-noded bar element, in 2D 3-noded triangular element, in 3D 4-noded 
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tetrahedron, but they are not limited by three dimensions, therefore it can go on e.g. 
in 4D, it is 5-noded 5-cell, also known as pentachoron, etc. 
     The complex elements are those for which the approximating polynomial consists 
of quadratic, cubic, and higher order terms. The complex elements may have the 
same shape as the simplex elements but will have additional boundary and, 
sometimes, internal nodes [18]. These are for example 6-noded triangular element for 
quadratic model, or 9-noded triangular element for cubic model. 
     The multiplex elements are those whose boundaries are parallel to the coordinate 
axes to achieve inter-element continuity, and whose approximating polynomials 
contain higher order terms [18]. These are for example 4-noded rectangle element for 
2D, and 8-noded hexahedron element for 3D. 

3.4.2 Inter-Element Compatibility 

     The polynomial used to represent variation of displacements over the element 
should ensure compatibility of displacement along the inter-element boundary. If 
this condition is not satisfied, the boundary of two adjacent elements may overlap or 
show void on application of external loads. This is illustrated in the Figure 3.2. The 
inter-element compatibility condition is satisfied when displacement at any point 
along a common edge, of all elements joining along that edge, is a function of 
displacements of nodes on that edge. 
 
 

                _ ___          _____ 
                   (a) Unloaded elements                             (b) Loaded compatible elements 
 

___   __  __ ____    _  
                   (c) Loaded incompatible                              (d) Loaded incompatible elements  
                         overlapping elements                                 with void 
            
Fig. 3.2: Examples of (in)compatibilities [15] 
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3.4.3 Convergence 

     When we choose a function to represent displacements at any point in the 
element, it should be ensured that several (convergence) conditions are satisfied. 
 

 The function should be continuous and differentiable (to obtain strains) within 
the element. This condition is automatically satisfied with polynomial 
functions. 

 The displacement polynomial should include a constant term, representing 
rigid body displacement, which should occur at any unrestrained component 
when subjected to external load. It also should contain linear terms, which on 
differentiation give constant strain terms. Constant strain is the logical 
condition as the element size reduces to a point in the limit. 

 Compatibility of displacements and its derivatives, up to required order, must 
be satisfied across inter-element boundaries. Otherwise, the displacement 
solution may result in separated or overlapped inter-element boundaries. 

 The polynomial should satisfy geometric isotropy (terms symmetric in terms 
of coordinate axes x, y, and z). It is very prudent to maintain this isotropy, 
because than a user of a general-purpose program can start with any 
particular node of his choice for defining the nodal sequences of different 
elements of the structure.  

3.4.4 Aspect Ratio 

     Certain conditions are generally specified in the standard packages on the sizes 
and angles for various elements. Aspect ratio is defined for this purpose as the ratio 
of the longest side to the shortest side. It is usually limited to 5, and angles are 
usually limited to 45° - 135° for a triangular element and to 60° - 120° for a 
quadrilateral of 3D element. Some examples are shown in the Figure 3.3. 
 
 

 
 
Fig. 3.3: Undesirable and preferred shapes of elements [15] 
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3.5 Elasticity Equations 
     First of all, the governing equations of elasticity (for calculation of displacements, 
strains and stresses) should be summarized. They are valid if the structure undergoes 
only small deformations and the material behaves in a linearly elastic manner. 
 
 

 
 
Fig. 3.4: Governing equations of elasticity 
 

3.5.1 Kinematic equations 

3.5.1.1 Displacements 

     The displacements of the points within an elastic body are is described by three 
components (u, v, w) or (u1, u2, u3), all of them dependent on the position in the 
Cartesian coordinate system (x, y, z) or (x1, x2, x3). In a matrix notation, the 
displacements are arranged in a vector as follows 
 

 
 
 
 















3213

3212

3211

,,
,,
,,

xxxu
xxxu
xxxu

xu  (3.01) 

 
while in the index notation the field of displacements can be described as 
 

 
3,2,1
3,2,1



j
i

xu ji        (3.02) 

 

displacements 
ui (u1, u2, u3) 

strains 
εij i=1, 2, 3; j=1, 2, 3 

stresses 
σij  i=1, 2, 3; j=1, 2, 3 

body forces 
bi (b1, b2, b3) 

kinematic equations 
ε = ∂u 

constitutive equations 

 

σ = Dε 
 
 
 

ε = Cσ 
 

equilibrium equations 
∂Tσ+b = 0 
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3.5.1.2 Strains 

     Strains describe the deformation of the body. At a point, the stretching, e.g. in the 
x-direction, can be seen as the differential displacement per unit length. The x-
component of strain is then 
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therefore, the normal strain can be understood as a displacement gradient. The 
distortion of the material, which can be described as the change in originally right 
angles, is the sum of tilts imparted to vertical and horizontal lines (also called 
engineering strain) 
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     For other displacement gradients εy, εz and distortions γyz, γzx, the same reasoning 
can be applied with cyclic change of coordinates x → y → z → x and displacements  
u → v → w → u.  
     The strain is a second order tensor and therefore the components can be arranged 
as follows 
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where, in the tensorial notation, shear strains (distortions) are halves of the 
engineering strains. The difference between vectors (first order tensors) and second 
order tensors shows up in how they transform with respect to coordinate rotations.  
     The index notation provides a compact description of all the components of three-
dimensional states of strain 
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where the comma denotes differentiation with respect to the following spatial 
variable (partial derivative). This double-subscript index notation leads naturally to a 
matrix arrangement of the strain components, in which the i-j component of the 
strain becomes the matrix element in the ith row and the jth column 
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Since the strain tensor is symmetric, i.e. εij = εji, there are six rather than nine 
independent strains, as might have been expected [19].  
     Sometimes it is convenient to arrange the strain components in a vector, or rather 
pseudovector. Strain is actually a 2nd order tensor, like stress or moment of inertia, 
and has mathematical properties very different from those of vectors, which must be 
taken into account while transforming or calculating the norm of strain. The ordering 
of the elements in the pseudovector is arbitrary, but it is conventional to list them in 
order (1, 1), (2, 2), (3, 3), (2, 3), (1, 3), (1, 2) [19]. This arrangement yields so-called 
Voigt notation. 
     Following the rules of a matrix multiplication, the strain pseudovector can also be 
written in terms of the displacement vector and proper operator. The strain-
displacement relationship can be expressed as 
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3.5.2 Equilibrium Equations 

     The force equilibrium on an infinitesimal cube results in the following equations 
(Cauchy’s equations) 
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where bi are body forces, such as gravity. These equations can be written using the 
index notation as 
 

0,  ijij b  (3.10) 
 
In a pseudovector-matrix form we can write 
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From the moment equilibrium on the infinitesimal cube, we get 
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due to this fact the stress tensor, here in the matrix representation, 
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is also symmetric. The element in the ith row and the jth column of this matrix is the 
stress on the ith face in the jth direction. 
     Equilibrium of the stress and surface traction on the boundary can be expressed 
by Cauchy’s formula. It requests the equilibrium of the external traction forces with 
internal stress. The traction t is associated with any plane with normal n. It is a stress 
on the surface of the body 
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where the externally applied force F comprises of components in direction of 
coordinates. Therefore, the traction t is completely defined by three traction vectors 
associated with coordinate planes, for instance  
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generally for an arbitrary normal plane n it holds that 
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which can be written in compact form as 
 

σnt   (3.17) 
 
and in the index notation as 
 

iij
n
j nt )(  (3.18) 

 
where ni is a multiple of the cosine angle between the investigated plane and 
coordinate system (it is a projection onto the coordinate axes). 

3.5.3 Constitutive Equations 

     The previous sections deal only with the kinematics (geometry) and static 
equilibrium of the body, but they do not provide insight on the role of the material 
itself. The kinematic equations relate strains to displacement gradients, and the 
equilibrium equations relate stress to the applied tractions on loaded boundaries and 
provide the relations among stress gradients within the material. Six more equations, 
relating the stresses to strains are needed, and these are provided by the material’s 
constitutive relations. In this section, isotropic elastic materials are dealt with [19].  
     In the general case of a linear relation between components of the strain and stress 
tensors, we might propose a statement of the form 
 

 tklklijklij D    (3.19) 
 
where Dijkl is a 4th order tensor and εtkl  is the initial (or eigen / stress-free) strain. 
Because indices kl do not appear in the equation after summation, they are called 
“dummy indices”. Previous expression constitutes a sequence of nine equations, 
since each component of σij is a linear combination of all the components of εkl. For 
instance 
 

33233312231211231123 ...  DDD   (3.20) 
 
Based on each of the indices of Dijkl taking on values from 1 to 3, we might expect 81 
independent components in D. However, both the stress tensor and the strain tensor 
are symmetric (σij = σji and εij = εji), we must also have Dijkl = Dijlk and  
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Dijkl = Djikl. These relations are called minor symmetries. This reduces the number of 
D components to 36, as can be seen from a linear relation between the pseudovector 
forms of the strain and stress [19] 
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It can be shown that the D matrix in this form is also symmetric and therefore it 
contains only 21 independent elements.  
     If the material exhibits symmetry in its elastic response, the number of 
independent elements in the D matrix can be further reduced. In the simplest case of 
an isotropic material, having the same stiffness in all directions, only two elements 
are independent – for example Young’s modulus (E) and Poisson’s ratio (ν). From 
these, so-called shear modulus can be calculated 
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     If a body is loaded by the stress σx, the resulting deformation εx = σx /E and the 
other normal components of strain are εy = εz = -νεx = -νσx /E. In the general  
stress-state, the other normal strain components are derived analogically (however, 
the material must be isotropic) 
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In case of isotropic material, each shear deformation is proportional to the 
corresponding shear stress with the constant of proportionality 1/G 
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The six above equations can be written in the matrix form as 
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which can be written in compact form as 
 

Cσε   (3.30) 
 
where C is the elastic compliance matrix. By inversion, we get the generalize Hook’s 
law 
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where 
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is the elastic stiffness matrix of an isotropic material. 

3.6 Governing Equations of FEM 

     Firstly, suitable basis functions N for an approximation of displacements are 
chosen. The d coefficients of these functions are the unknowns of the task and they 
also scale the value of the basis functions at the nodes. 
     To express strains from approximated displacements, the kinematic equations are 
used as usually. Afterwards, stress is calculated from approximated strain using the 
standard constitutive equations. 
     The change comes when body force should be calculated from approximated 
stress, because the equilibrium equations are not used. The equilibrium conditions 
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are expressed by means of a variational principle (minimum potential energy, virtual 
work, etc.) and we get so-called weak solution. 
 
 

 
 
Fig. 3.5: Governing equations of finite element method 
 
 
    Before it is approached to a derivation of the weak solution, it is useful to recall the 
per-partes integration, which says that 
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where f(x) and g(x) are arbitrary functions. The first term of the right-hand side can 
be expressed as 
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where n is a unit normal vector of an arbitrary plane and Γ is a boundary of the 
element. After back-substitution and generalization we get 
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where Ω is a volume of the element and ∂ is a differential operator. The knowledge 
can be applied on the expression of the work done by internal forces (or internal 
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strain energy), but if standard strain is replaced by virtual strain, we get virtual work 
done by internal forces. 
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Where σ is stress tensor, δε is virtual strain tensor, δu is virtual displacement vector, 
b is prescribed body force vector, t is surface traction vector and t  is prescribed 
surface traction vector. 
     Since it is required for Γu that δu = 0 we get 
 

0=d
      
∫

uΓ

T Γδ tu   (3.37) 

 
and the equation (3.36) can be simplified to the form 
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Now, with the knowledge of the governing equations of FEM, it is possible to 
substitute into the equation (3.38) as 
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After small rearrangement we get 
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Now it is clearly visible, that the equation (3.40) can be simply rewritten as 
 

extfdK =  (3.41) 
 
where K is the stiffness matrix and fext is external force vector. 
     The discretized weak form gives a set of linear algebraic equations. The discrete 
nodal displacements d are the solution to these equations. 
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4 Methods Used by ATENA 

     After several consultations with my supervisor and prof. Petr Kabele, the ATENA 
software by Červenka Consulting, s.r.o. was chosen as the suitable code for non-
linear simulation of masonry. The ATENA has a realistic model for concrete, 
including development of cracks. It has been tested successfully many times and the 
development of the software lasts several tens of years.  Of course, this thesis deals 
with mortars and not with concrete, but it has been proven e.g. by Šejnoha et al. 
(2008) [20] that the advanced model for concrete is very well suited even for mortars 
modeling. 
     In this chapter, the methods and the models used by the ATENA are described, 
since their knowledge is fundamental for the correct use, as well as the basic 
knowledge of the finite element method, described in Chapter 3. 

4.1 Material Model 
     The model used in the thesis, 3D non-linear cementitious model, is probably the 
most powerful model for concrete implemented in the ATENA. Detailed description 
of this model is available in Červenka, Papanikolaou (2008) [21]. This section is a 
summary of that paper with some additional explanations. Therefore, for simplicity, 
this reference will not be indicated throughout the section anymore. 
     It is a 3D constitutive model, combining fracture and plasticity. Fracture is 
modeled by the Rankine tensile criterion. A hardening and softening plasticity 
model, based on the Menétrey, Willam (1995) [22] three-parameter failure surface, is 
used to simulate concrete crushing. The plastic-damage models usually consider an 
isotropic damage formulation, which neglects the anisotropic nature of cracked 
concrete behavior. In this model, the cracked concrete is modeled as an orthotropic 
material and it considers the problematic of physical changes e.g. crack closure. In 
addition, it considers the shear behavior of cracked concrete and rotated as well as 
fixed crack formulation. 
     The difference between rotated and fixed crack models is that in the case of the 
rotated crack model, the cracks rotate as the direction of the principal stress changes 
and therefore the crack is always normal to the principal tensile stress direction.  
The fixed crack model is obtained if the cracks are normal to the principle tensile 
stress at the moment of crack initiation and their direction do not change during the 
subsequent growth even when the direction of the principal stress changes. From this 
reason, it is possible to set fixed crack model coefficient in ATENA. Its value 
determines at which maximum residual tensile stress level the crack direction gets 
fixed. In other words, 0,0 means fully rotated crack model, 1,0 fixed since cracking 
starts. Values between 0,0 and 1,0 determine the level, e.g. 0,7 fixes the crack 
direction from the moment it opens, till the softening law drops to 0,7 times the 
initial tensile strength (more about softening in Section 4.1.3). 
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4.1.1 Model Formulation 

     The material model formulation assumes small strains and it is based on the strain 
decomposition, which can be written as 
 

fpe ++= εεεε   (4.01) 
 
where ε  is the total strain rate, eε is the elastic strain rate, pε is the plastic strain rate 
and fε  is the fracture strain rate. 
     The stress development can be then defined by the following rate equations 
describing the progressive degradation (cracking) and plastic yielding (crushing) 
 

)--(== fpe εεεDεDσ   (4.02) 
      
     The plastic strain rate pε  is evaluated from the plasticity flow rule 

 
0          ,)(= pppp ≥λλ  σgε  (4.03) 

 
where pλ is a plastic multiplier rate, which expresses the rate of plastic deformation 
and gp(σ) is matrix with six components, which are functions of an instantaneous 
stress state, and define a ratio of individual components of plastic strain rate. In the 
case of associative plasticity, the gp(σ) matrix is associated with a plasticity function fp 
in such a way that it is its a gradient. Then the equation (4.03) can be rewritten as 
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However, the non-associative plasticity is implemented in the non-linear cementitious 
model. In such a case, it is not associated with a plasticity function but with a plastic 
potential function gp and gp(σ) is its gradient 
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The plastic potential function can have a similar shape as the plasticity function, but 
some parameters are changed making the plastic strain description more  
realistic [23].  
     Following the unified theory of an elastic degradation, it is possible to define 
analogous quantities for the fracturing model fε  
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where fε  is the fracture strain rate, fλ  is the inelastic fracturing multiplier and gf(σ) 
is the potential, defining the direction of inelastic fracturing strains in the fracturing 
model. 

4.1.2 Fracture Model 

     The Rankine criterion is used for concrete cracking. A visualization of the Rankine 
criterion in Westergaard coordinates appears in the Figure 4.1. 
 
 

                       
   (a) 3D stress space                          (b) Rendulić plane               (c) deviatoric plane 

 
Fig. 4.1: Rankine failure surface in Westergaard coordinates [21] 
 
 
An interesting property of the Rankine criterion is that it reaches infinite values for 
compression. It means that if loaded by compression, plastic deformation never 
occurs and the behavior stays elastic for an arbitrarily big loading. 
     The crack opening w is computed from the total accumulated value of strain fε̂ in 
a direction k 4, plus the current increment of fracturing strain, and this sum is 
multiplied by the characteristic length Lt. The characteristic length is actually a crack 
band size. In this model, the crack band size is calculated as a width or size of the 
element projected into the direction k. This is illustrated in Figure 4.2. It has been 
proven that this approach is satisfactory for linear finite elements. The crack band 
approach assures that the energy dissipation is not too sensitive with respect to  
the finite element size. 
 
 

                                                
4  In the case of rotated crack model, the direction k corresponds to the instantaneous principal strain 
directions. However, in the case of fixed crack model, it is given by the principal strain directions at 
the onset of the cracking. 
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Fig. 4.2: Tensile strength function with respect to crack width 
 
 
     It is important to distinguish between total fracturing strain fε̂ , which corresponds 
to the maximum fracturing strain at material direction k reached during the loading 
process, and the current fracturing strain fε , which can be smaller due to crack 
closure. 
     The area below the graph in Figure 4.2 equals to a material property called 
fracture energy Gf. It is energy (or work) needed for exceeding of the material 
cohesion. This energy depends on the type of material and on the area of a new 
crack, therefore the unit is Jm-2 = Nm-1. 

4.1.3 Plasticity Model 

     In this model, the Menétrey and Willam three parameter failure surface is used. A 
visualization of the Menétrey and Willam criterion in Westergaard coordinates is 
shown in the Figure 4.3. 
 
 

                
   (a) 3D stress space                           (b) Rendulić plane             (c) deviatoric plane 

 
Fig. 4.3: Menétrey-Willam failure surface in Westergaard coordinates [21] 
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     Very important parameter in the model is λt, which must be bigger or equal to 1. It 
scales value for the tensile concrete strength in order to provide intersection between 
the Rankine (fracture) and the Menétrey-Willam (plasticity) failure surfaces during 
the combination procedure, as it is shown in Figure 4.4. Then the parameter e 
∈ (0,5;1,0) defines the roundness of the Menétrey-Willam failure surface, with a 
recommended value e = 0,52 leading to biaxial concrete strength equal to fbc = 1,14fc. 
The failure surface has sharp corners if e = 0,5 , and is fully circular around the 
hydrostatic axis if e = 1,0. 
 
 

 
    (a) 3D stress space for λt = 2,0                                       (b) deviatoric plane for λt = 2,0 
 
 

 
     (c) 3D stress space for λt = 1,0                                         (d) deviatoric plane for λt = 1,0 
 
Fig. 4.4: Rankine and Menétrey-Willam failure surfaces put together for different λt  [21] 
 
 
     The position of the Menétrey-Willam failure surface is not fixed but it can expand 
and move along the hydrostatic axis (simulating hardening and softening stages), 
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based on the value of the hardening/softening parameter κ. In the model, this 
parameter indentifies with the volumetric strain 
     The instantaneous shape and location of the loading surface during hardening is 
defined by a hardening function k, which depends on the hardening/softening 
parameter κ. This function is directly incorporated in the Menétrey-Willam failure 
surface and it has two main parameters. tv,

pε  is the plastic volumetric strain at 
uniaxial concrete strength (onset of softening) and ko is the value that defines the 
initial yield surface that bounds the initial elastic regime (onset of plasticity). 
     At the end of the hardening process, the hardening function retains a constant 
value of unity and the material enters the softening regime, which is controlled by 
softening function c. This function simulates the material decohesion by shifting the 
loading surface along the negative hydrostatic axis. The softening function value 
starts from unity and complete material decohesion is attained at c = 0. The evolution 
of both, hardening and softening functions with respect to the hardening/softening 
parameter is schematically shown in Figure 4.5. 
 
 

 
 

Fig. 4.5: Hardening and softening functions with respect to plastic volumetric strain 
 
 
     Another important parameter is a direction of the plastic flow β. If β<0 material is 
compacted during crushing, if β = 0 material volume is preserved, and if β>0 material 
is dilated [24]. 
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4.2 Solution of Non-Linear Equations 
     In the previous Section 4.1, there were described all the parameters that can be set 
in a New material menu in the ATENA program, if one of the 3D non-linear 
cementitious material models is chosen (there are four of them, each offering 
different setting possibilities).  
     This section is dedicated to the solution of non-linear equations.  In general, these 
can be solved either by direct solvers or by iterative solvers. However, all of them 
have one common problem – necessity to solve a set of linear algebraic equations. 
     The direct solvers have given number of steps and operations, which must be 
done, in advance. The Gauss elimination based algorithms makes the solution slow 
and demanding with respect to a memory of a computer whereas sparse solvers are 
stable a reliable, are less demanding on a memory of a computer, and are faster then 
the Gauss elimination [25]. 
     The iterative solvers are suitable for solution of big problems, when the memory is 
not big enough for the sparse solver. The approximate solution of the set of equations 
is searched iteratively in such a way that the norm of the difference between the right 
hand side (internal forces) and the left hand side (external forces) of the equation 
must be smaller than a given tolerance [25]. 
     Hereinafter, there are mentioned several methods which are implemented in 
ATENA. 

4.2.1 Full Newton-Raphson Method 

     This method is very good for a demonstration of the iterative procedure. Using 
the concept of incremental step-by-step analysis, we obtain the following set of non-
linear equations 
 

)(-=Δ)( dffddK intext  (4.07) 
 
where fext is the vector of total equivalent nodal loads, fint(d) is the vector of internal 
joint forces, Δd is the displacement increment due to loading increment, d are the 
displacements of structure before load increment and K(d) is the stiffness matrix, 
relating loading increments to displacement increments. 
     The right hand side of the equation (4.07) represents out-of-balance forces during 
a load increment, i.e. the total load level after applying the loading increment minus 
forces at the end of the previous load step. Generally, the stiffness matrix is 
displacement dependent, it is a function of d, but this is usually neglected within a 
load increment in order to preserve linearity. In this case, the stiffness matrix is 
calculated based on the value of d related to the level before the load increment [24]. 
     The non-linearity of the equation (4.07) can be shown on the non-linearity of the 
internal forces, because 
 

)(≠)( dfdf intint kk  (4.08) 
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where k is an arbitrary constant, and the non-linearity can be also illustrated on the 
stiffness matrix, because 

 
)Δ+(≠)( ddKdK  (4.09) 

 
The set of equations represents the mathematical description of structural behavior 
during one step of the solution. Rewriting equations (4.07) for the i-th iteration, we 
get 

 
)(-=Δ)( i-1intextii-1 dffddK  (4.10) 

 
All the quantities for the (i-1)th iteration have already been calculated during the 
previous solution steps. Now we solve for di at load level fext using 

 
ii-1i ddd Δ+=  (4.11) 

 
The concept of the solution by full Newton-Raphson method (NRM) is illustrated in  
Figure 4.6. 
 
 

 
 

Fig. 4.6: Full Newton-Raphson method 
 
 

     As explained above, the equation (4.10) is non-linear and therefore it is necessary 
to iterate until some convergence criterion is satisfied. The following possibilities are 
supported in ATENA [24] 
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     This criterion checks the norm of displacement changes. It says that the norm of 
the displacement increment vector must be small enough when compared with the 
norm of the total displacement vector at the end of iteration. Although this 
convergence criterion is effective in the analysis of a one-degree-of-freedom system, 
experience has shown that in general, non-linear analysis the convergence factor can 
be ill-behaved5 and therefore it is not a reliable indicator of how the iteration is 
proceeding [26].  
     A more reliable convergence criterion is based on the out-of-balance forces. A 
force convergence criterion requires that the norm of the out-of-balance load vector 
be within a preset tolerance Fε  of the original load increment 
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The major disadvantages in using a force check are that inconsistencies in units can 
appear in the force vector (e.g. forces and moments in beam elements) and that the 
displacement solution does not enter the termination criterion [26]. 
     In order to provide some indication of when both the displacements and forces are 
near their equilibrium values, the increment in internal energy during each iteration 
(i.e. the amount of work done by the out-of-balance loads on the displacement 
increments) can be compared to the initial internal energy increment. Convergence is 
assumed to be reached when [26] 
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     The various characteristics of termination criteria make it difficult to recommend a 
check for all nonlinear analyses. However, it appears that a combination of force and 
energy checks (equations (4.13) and (4.14)) provide the most effective convergence 
criteria because increments in both terms tend to zero near the solution, and together 
they provide some measure of the accuracy of both displacements and forces. Also, 
the energy check (equation (4.14)) with Eε  = 1 is recommended as a check for 
divergence [26]. 
     However, the ATENA contains one more check of out-of-balance forces in terms 
of maximum components, rather than Euclidian norms 
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     All the convergence limits ε are set by default to 0,01 (i.e. 1%). 

                                                
5 Said of an algorithm or computational method that tends to blow up because of accumulated round 
off error or poor convergence properties. 
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4.2.2 Modified Newton-Raphson Method 

     This method is not among the default options in ATENA, but it can be very easily 
set, by modifying the full NRM. A reason for the modification is that the most time 
consuming part of solution of equation (4.10) is the recalculation of the stiffness 
matrix K(di-1) at each iteration. In many cases this is not necessary and we can use 
matrix K(d0) from the first iteration of the step. This is the basic idea of the modified 
NRM. It produces very significant time saving, but on the other hand, it also exhibits 
worse convergence of the solution procedure. 
     The simplification adopted in the MNRM can be mathematically expressed as 

 
)()( - 01i dKdK ≈  (4.16) 

 
This method is depicted in Figure 4.7. By simple comparing Figures 4.6 and 4.7, it is 
clear that the MNRM converges more slowly than the full NRM. On the other hand, a 
single iteration costs less computing time, because it is necessary to assemble and 
eliminate the stiffness matrix only once. In practice, a careful balance of the two 
methods is usually adopted in order to produce the best performance for a particular 
case. Usually, it is recommended to start a solution with the original Newton-
Raphson method and later, it means near extreme points, switch to the modified 
procedure to avoid divergence [24]. 
 
 

 
 

Fig. 4.7: Modified Newton-Raphson method 
 

4.2.3 Arc-Length Method 

     Load controlled NRM fails near the limit point. To overcome difficulties with limit 
points, displacement control techniques were introduced. However, for structural 
systems exhibiting snap-through or snap-back behavior, even these techniques lead 
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to error. Several ways to overcome the problem are to switch between load and 
displacement controls, use the artificial springs, or abandon the equilibrium 
iterations in the close vicinity of the limit point.  
     To obtain a more general technique, the arc-length method, originally developed 
by Riks (1972; 1979) and Wempner (1971) and later modified by several scholars, is 
used. Because of its good performance, it is now quite well established for geometric 
non-linearity and for material non-linearity as well. 
     The primary task is to observe complete load-displacement relationship rather 
then applying a constant loading increment, as it is in the Newton-Raphson method. 
Hence, this method fixes not only the loading but also the displacement conditions at 
the end of a step. There are many ways of fixing these, but one of the most common 
is to establish the length of the loading vector and displacement changes within the 
step.  
     From the mathematical point of view it means that we must introduce an 
additional degree of freedom associated with the loading level (i.e. a problem has n 
displacement degrees of freedom and one for loading) and in addition, a constraint 
for the new unknown variable must be introduced. The new degree of freedom is 
usually named λ. The basic equation can be rewritten from the equation (4.07) as 

 
)(-=Δ)( dffddK intextλ  (4.17) 

 
where λ is the new loading factor and the vector fext is not, in this case, the total 
loading at the end of the step, but it is only a reference loading type, which is scaled 
by the λ. The stiffness matrix K(d) can be either recomputed for every iteration 
(similar to full NRM) or it can be fixed based on the first iteration for all subsequent 
iterations (similar to MNRM). 
     There are many possibilities for defining constraints on λ and those implemented 
in ATENA are: 

 Crisfield method 

 Normal update method 

 Consistently linearized method 

 Explicit orthogonal method 
 
For more details about these methods, see ATENA Program Documentation [24]. 

4.2.4 Line Search Method 

       Generally, this optimization method is based on the variational principle, which 
determines the solution of a set of equations in a form of Ax=b. It says that if A is 
positive definite, then the energy which the functional attains is a unique minimum; 
this minimum occurs at the solution of Ax=b. To reach the minimum, we need to 
know a step length and a descent direction, in which the minimum is approached. 
Once a descent direction is known, the problem of computing an appropriate step 
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length is reduced to finding the minimum of a function of a single variable. This 
process is known as a line search. 
     In ATENA, the objective of this method is to calculate the parameter η. The scalar 
η is used to accelerate solutions in cases of well-behaved load-deformation 
relationships or to damp possible oscillations, if some convergence problems arose, 
e.g. near bifurcation and extreme points.  
     The basic idea behind η is to minimize work of current out-of-balance forces on 
displacement increment. The line search method can be used with both, Newton-
Raphson method and arc-length method. 
     Simply, we can use any method to calculate displacement increment δ, then we 
calculate vectors of out-of-balance forces g(di-1) and g(di-1+ηi-1∙δi-1), and finally, we 
calculate parameter η. Since the equations are non-linear, the scalar η must be solved 
by iterations until the ratio of norms of the vectors of out-of-balance forces is not less 
or equal to a specified energy drop, typically in the range from 0,6 to 0,8 [19]. 
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5 Numerical Simulations 

     Originally, the plan was to use a paper by Baronio, Binda, Lombardini (1997) [13], 
which has already served as a source for mixing ratios of mortar samples prepared in 
a laboratory and there is also presented an experiment of a masonry structure with 
thick joints. The experiment should have been repeated by a numerical simulation 
and the parameters used in ATENA then fitted to results of the real experiment. 
However, after thorough study it was found useless, because they use fresh mortar. 
It is obvious that the monitored displacements were huge even without an external 
loading and stresses the structure was able to withstand were very small. 
     Because the cocciopesto is not a usual type of mortar, it was not possible to find 
another experiment dealing with cocciopesto, which would be suitable for 
comparison and fitting of results. Therefore, a new research of a literature began, in 
order to find a suitable type of experiment settings, no matter what mortar was used.  
     Since the extraordinary earthquake resistance is attributed to the thick joints made 
of the cocciopesto mortar (see Section 1.4), structures subjected to shear were of the 
main interest. Finally, after a comparison of several papers dealing with the issue of 
shear walls and pushover analyses, a final setting was chosen.  

5.1 Numerical Model 
     It is a masonry wall with fixed foot and the top of the wall has enabled rotations 
and horizontal displacements only. Self-weight is not taken into account. There is a 
steel plate placed on the top, to distribute the stresses caused by a prescribed 
displacement u  in x-direction. This simulates a laboratory setting with restricted 
push-over mode, when the tested walls are placed into a steel frame with hydraulic 
jacks. There were monitored two quantities. Number one is load monitored just next  
 
 

                                    
 

Fig. 5.1: Shear wall scheme 
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to the applied displacement and number two is displacement monitored in the right 
top corner of the wall. It is schematically illustrated in Figure 5.1. 
     It was planned to compare a response of structures with cocciopesto mortar and 
“standard” mortar. Nevertheless, to find all necessary mechanical properties of the 
standard mortar in one paper turned out to be impossible and find them in several 
papers is very disputable, because the individual mortars evaluated in different 
papers and laboratories are always different as well, depending very strongly on mix 
ratios, setting and hardening conditions, curing time etc. Therefore, such a procedure 
of obtaining mechanical properties would result in hybrid mortar with unreasonable 
characteristics. The sound method of comparing two mortars is to get own results 
from own testing. Unfortunately, our own samples of the cocciopesto mortar are still 
in moulds and not ready for testing, as you can see in Figure 5.2.  
 
 

 
 
Fig. 5.2: Samples of cocciopesto mortar in laboratory 
 
 
     From the reasons stated above, the strategy was changed from comparing two 
mortars, to comparing one mortar with various mechanical properties and used on 
different types of walls, while observing trends rather than absolute peak or collapse 
values. 

5.2 Setting of ATENA 
     There were carried out both analyses, 2D and 3D. 2D pre-processing was done in 
ATENA 2D version 3.2.0.0, while analysis and post-processing were done in ATENA 
2D version 4.2.2.0. In a case of 3D, the pre-processing was done in ATENA 3D 
version 3.2.0 and analysis with post-processing in ATENA 3D version 4.2.5.3252. 
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5.2.1 Materials 

     There were used two different material models and three materials. Material 
model 3D nonlinear cementitious 2 was used for both, the cocciopesto mortar and the 
clay bricks in 2D and 3D analyses. All the material parameters, which are possible to 
set for the cocciopesto mortar, are shown in Table 5.1. Only the parameters E, μ, fc 
and ft were set different from default values. It was done according to preliminary 
results of micromechanical homogenization by Nežerka (2011) [27]. 
  
 
Table 5.1: Material parameters of cocciopesto mortar 
 

Elastic modulus E [MPa]: 2200 Fail. surface eccentricity e [-]: 0,52 
Poisson's ratio μ [-]: 0,202 Specific material weight ρ [kgm-3]: 2300 

Tensile strength ft [MPa]: 0,7 Plastic strain at  
compressive strength εcp [-]: 

-3,489E-4 

Compressive strength fc [MPa]: -5,0 Coefficient of thermal  
expansion α [K-1]: 1,2E-5 

Specific fracture energy Gf [Nm-1]: 19,55 Fixed crack model  
coefficient [-]: 1,0 

Critical compressive  
displacement wd [mm]: -0,5 Multiplier for plastic flow  

direction β [-]: 0,0 

 
 
     The parameters for the clay brick appear in Table 5.2. Again, only the parameters 
E, μ, fc and ft were changed. These were taken from paper by Brencich et al. [28]. 
 
 
Table 5.2: Material parameters of clay brick 
 

Elastic modulus E [MPa]: 2400 Fail. surface eccentricity e [-]: 0,52 
Poisson's ratio μ [-]: 0,2 Specific material weight ρ [kgm-3]: 2300 

Tensile strength ft [MPa]: 3,4 Plastic strain at  
compressive strength εcp [-]: 

-7,045E-4 

Compressive strength fc [MPa]: -18,7 Coefficient of thermal  
expansion α [K-1]: 1,2E-5 

Specific fracture energy Gf [Nm-1]: 47,11 Fixed crack model  
coefficient [-]: 1,0 

Critical compressive  
displacement wd [mm]: -0,5 Multiplier for plastic flow 

direction β [-]: 0,0 
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     For the steel plate on the top of the wall, plane stress elastic isotropic material 
model was used for 2D analysis and 3D elastic isotropic for 3D analysis respectively. 
All material parameters, which are possible to change, are shown in Table 5.3 and all 
of them were left as they were set by default. 
 
 
Table 5.3: Material parameters of steel plate 
 

Elastic modulus E [GPa]: 210 Specific material weight ρ [kgm-3]: 2300 

Poisson's ratio μ [-]: 0,3 Coefficient of thermal  
expansion α [K-1]: 1,2E-5 

 

5.2.2 Solution Parameters 

     The objective is to trace the load-displacement curve up to the post-failure 
softening regime. It would be possible to prescribe loading in terms of forces and use 
the arc-length method, which automatically changes the sign of load increment once 
a peak is attained. Alternatively, displacement can be prescribed. Since displacement 
will keep on increasing even after the wall fails, either the Newton-Raphson method 
or arc-length method can be employed. Due to its better stability,  
the Newton-Raphson solution method was chosen. 
     To speed up convergence of the solution, the full Newton-Raphson method with 
tangent stiffness updated in each iteration was employed. To automatically adjust 
the speed of analysis according to the non-linearity of the response, the line search 
method was utilized. All the parameters are summarized in Table 5.4. 
 
 
Table 5.4: Summary of solution parameters 
 

Solution method: Newton-Raphson 
Update stiffness: Each iteration 
Stiffness type: Tangent 
Iteration limit for step: 40 
Error tolerances: 0,01 
Line search: on, with iterations 

 
 
     However, before the solution method was finally decided, comparison of  
the Newton-Raphson method and arc-length method was done, in order to be sure 
that the methods do not differ significantly in any phase of the loading. Because then 
it would be necessary to find the reason of the difference and maybe even to change 
the solution method. A graph showing the results of both methods is in Figure 5.3. 
As you can see, both methods are perfectly corresponding up to the peak and even in 
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post-peak phase the correspondence is almost perfect. Since the NRM was less time 
demanding, the above made choice was just approved by this comparison. 
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Fig. 5.3: Newton-Raphson method vs. Arc-length method 
 
 
     As mentioned in Section 4.2.3, for large or brittle beams, a snap-back behavior 
may occur, in which case both displacement and force increments change their sign 
upon failure. In such situation, the arc-length solution would be the only applicable 
method. 

5.2.3 Meshing 

     The quadrilateral elements in 2D and the brick elements in 3D analyses were used, 
wherever it was possible. Since the wall was modeled as bricks and mortar joints 
separately, without any homogenization, the size of the elements varied from case to 
case. 
     To know the importance of a fineness of meshing on the solution, comparative 
analyses were carried out. The result is depicted in Figure 5.4. It is apparent that the 
curves are different in values but not so much different in shapes. As it was 
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discussed in Section 3.2, FEM is based on minimum potential energy theorem and 
therefore it converges to the correct solution from a higher value as the number of 
elements in the model increases. Therefore, it is clear that the finer meshing gives 
more precise results.  
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Fig. 5.4: Influence of fineness of meshing 
 
 
     However, the finer meshing was extremely demanding on a computer and time. 
Executing more such analyses would have been unfeasible. In addition, as mentioned 
in Section 5.1, the aim is to observe trends rather than precise peak or collapse values. 
From these reasons, the absolute accuracy of the results is not essential and the less 
fine meshing was chosen for further analyses. 

5.2.4 2D analysis vs. 3D analysis      

     Another important decision was, whether use 2D or 3D analysis. It is obvious that 
2D analysis needs fewer elements and therefore it is much more time efficient than 
3D analysis. Nevertheless, before the 2D analysis was adopted for its advantages, it 
was necessary to check a correspondence of these two analyses. For this comparison,  
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a standard wall with 10 mm thick joints was chosen. The concrete dimensions of the 
wall and bricks will be discussed in the following sections. A graphical result of the 
comparison is shown in Figure 5.5. Apparently, in this case not only values differ, 
but also the shapes are quite different, especially in the peak zone. Generally, the 3D 
analysis is usually more realistic, but it was necessary to prove that this is also the 
case.  
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Fig. 5.5: 2Danalysis vs. 3D analysis 
 
 
     Pictures of the cracked walls were very helpful in this issue. As you can see in 
Figures 5.6 and 5.7, the distribution of cracks is in both cases very different. One 
would have naturally expected a crack pattern similar to Figure 5.7, especially when 
taking into account the direction of maximum principal stress, respectively the 
direction of the tensile diagonal. Moreover, when this assumption was supported by 
Figure 5.8 from an experiment made by Maheri et al. (2008) [29], there were no 
doubts that the 3D analysis really gives more reasonable and realistic results. 
Therefore, all the following analyses are performed in 3D. 
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Fig. 5.6: Crack pattern of 2D shear wall 

 
 

 
                                            
Fig. 5.7: Crack pattern of 3D shear wall 
 
                                                               

 
 

Fig. 5.8: Crack pattern of experimental shear wall [29] 
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5.3 Influence of Geometry 
     In this section, an influence of different wall geometries on a structural behavior is 
examined.  
     There are used the clay bricks with properties described in Section 5.2.1 and they 
are so-called small format full bricks with dimensions 250 x 120 x 65 mm. The same 
or similar type of bricks was used in several papers, e.g. Brasile et al. (2007) [6] or 
Brencich et al. [28]. This type of bricks was used in all analyses in this thesis and 
there are always six rows of the bricks, with two and half brick in each row. 
     The properties of the used cocciopesto mortar are described in Section 5.2.1 and 
they do not change throughout the current section. 

5.3.1 Thickness of Joints 

     To find out the influence of the thickness of the joints is very interesting task. It 
was investigated on two different walls.  
     The first wall has standard 10 mm thick cocciopesto mortar joints. The geometry 
of this wall, with all important dimensions, is depicted in Figure 5.9. 
 
 

 
 
Fig. 5.9: Shear wall with 10 mm thick joints 
 
 
     The second wall has 45 thick joints, made of cocciopesto mortar. This thickness 
was chosen according to Baronio, Binda, Lombardini (1997) [13], who studied the 
coociopesto mortar coming from the remaining of the original walls of St. Michele in 
Africisco. The geometry and dimension are shown in Figure 5.10. The wall may seem 
little bit ridiculous, in comparison with the first wall. However, you can see that  
the thickness of the bricks is still bigger than thickness of the joints, and as you know 
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from Section 1.1, it was no exception in ancient times, if the joints were even thicker 
than the bricks. 
 

 
 
Fig. 5.10: Shear wall with 45 mm thick joints 
 
 
     Both walls were subjected to the same prescribed displacements and deformed  
a little beyond the peak values. Again, this loading procedure was done in all 
performed analyses. The load-displacement graphs of both analyses are depicted in 
Figure 5.11 and coordinates of peak values are in Table 5.5. 
 
 
Table 5.5: Summary of peak values for different thicknesses of joints 
 

Thickness  
of joints 

[mm] 

Displacement 
[mm] 

Load 
[kN] 

10 1,11 85,38 
45 1,74 83,85 

 
 
     We can observe several interesting fact in the graphs. For example, note the small 
discontinuities of the curves, around the loading of 20 kN. These are caused by a 
sudden propagation of cracks in the right top horizontal joint, because the joint tries 
to “open”, as the right top corner of the wall is being pushed aside. 
     Another interesting fact is that the wall with 45 mm thick joints is apparently more 
compliant than the wall with 10 mm thick joints, but practically without any loss of 
resistance. This is rather remarkable. This is due to a bigger content of the “weak” 
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member, i.e. mortar, in the wall, which makes the wall with 45 mm thick joints less 
stiff. The higher compliance is advantageous in situations, when e.g. differential 
settlement or other non-force loading can occur. Most importantly, the compliant 
structures are also able to resist dynamic effects in a bigger extent than the stiff ones. 
This can be one of the reasons, why the ancient structures with thick joints were able 
to withstand a high seismicity for many hundreds of years, as for example Hagia 
Sofia in Istanbul. 
     You have also probably noticed the shape difference of the peak zones of both 
walls. It is smooth in the case of the 10 mm thick joints and very sharp in the case of 
the 45 mm thick joints. Neither different solution method nor finer meshing changed 
the sharp character of 45 mm joints curve. The explanation is in different reasons of 
the collapse. The internal strain energy is calculated as a product of stress and strain. 
Since the wall with 10 mm thick joints reaches almost the same loading as the wall 
with 45 mm thick joints, but smaller displacement, it also attains lower internal strain 
energy. Therefore, the wall with 10 mm joints fails due to exhausting its load-bearing 
capacity, which is quite gradual, whereas the wall with 45 mm thick joints collapses 
due to reaching its fracture energy and this is manifested by a sudden failure. What 
happens if the fracture energy is increased will be shown in Section 5.4.2. 
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Fig. 5.11: Shear walls with 10 mm thick joints and with 45 mm thick joints 
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     The difference in the behavior of the particular walls in the vicinity of the peak is 
well illustrated in Figures 5.12 and 5.13.  
     As you can see, the cracking is in the case of the wall with 10 mm thick joints very 
gradual. The state of the crack distribution 0,015 mm before peak is almost the same 
as in the peak itself and it necessary to go 0,06 mm beyond the peak to reach the 
cracking of a diagonal. 
 
 

                  
 
 
 
 
 

     (a) 0,015 mm before peak                                            (b) peak 
 
 

 
 
 
 
 

          (c) 0,06 mm beyond peak 
 
Fig. 5.12: Behavior of wall with 10 mm thick joints in vicinity of peak 
 
 
     On the contrary, in the case of 45 mm joints, a small change on the diagonal is 
visible even between 0,015 mm before peak and peak itself, and the diagonal 
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completely cracks 0,01 mm beyond peak only. The crack evolution is really fast 
beyond the peak. 
 
 

                
 
 
 
 

      (a) 0,015 mm before peak                                     (b) peak 
 
 

 
 
 
 
 

                            (c) 0,01 mm beyond peak 
 
Fig. 5.13: Behavior of wall with 45 mm thick joints in vicinity of peak 
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5.3.2 Head Joints 

     An interesting idea is to observe the influence of head joints (the vertical ones) on 
load-bearing capacity of the wall. This strategy was inspired by Maheri et al.  (2008) 
[29]. The authors of that paper noted that omitting the head joints even more  
 
 

 
 
Fig. 5.14: Shear wall with 10 mm thick joints without head joints 

 
 

decreases the stiffness of the wall. This strategy combined with thick joints could 
create a very compliant structure. Therefore, the wall with 10 mm thick joints 
without the head joints was modeled, see Figure 5.14, to compare the properties of 
 
 

    
      (a) without 45 mm thick head joints                              (b) without 10 mm thick head joints 
 
Fig. 5.15: Shear walls with 45 mm thick joints without head joints 
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the standard walls with/without the head joints.  
     The wall with 45 mm thick joints without head joints was created as well. 
However, omission of 45 mm thick head joints looks very strange, as you can see in 
Figure 5.15 (a), and it probably would not be practical in-situ either. Therefore, a 
hybrid wall with 45 mm thick bed joints and only 10 mm thick head joints, which 
were omitted, was modeled. It is illustrated in Figure 5.15 (b). 
     The materials, bricks and loading procedure are the same as described in  
section 5.3. A comparison of the walls with 10 mm thick bed joints and with/without 
the head joints is in the Figure 5.16. Values of the peaks are shown in Table 5.6.  
 
 
Table 5.6: Peak values for walls with 10 mm thick bed joints and with/without head joints 
 

Head joints Displacement 
[mm] 

Load 
[kN] 

yes 1,11 85,38 
no 0,95 59,79 
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Fig. 5.16: Shear walls with 10 mm thick bed joints and with/without head joints 



NUMERICAL SIMULATIONS   57 

     By mere glancing at the graph, we can say that omitting the head joints actually 
brought no benefits. The structure is more compliant and ductile, but the important 
properties, such limit deformation and load-bearing capacity, decreased significantly. 
The cracked wall just beyond the peak is in Figure 5.17. 
 
 

 
 
Fig. 5.17: Crack pattern of wall with 10 mm thick bed joints without head joints 
 
 
     Results of the analyses of the walls with 45 mm thick bed joints are depicted in  
Figure 5.18. As already mentioned, two types of the head joints (i.e. 10 mm and 45 
mm) were omitted. In this case, the results of walls without the head joints are not 
worse so evidently. The coordinates of the peaks of the individual walls appear in  
Table 5.7. It is obvious that if we want to omit any head joints, then definitely  
 
 
Table 5.7: Peak values for walls with 45 mm thick bed joints and with/without head joints 
 

Head joints Displacement 
[mm] 

Load 
[kN] 

yes 1,74 83,85 
no - 10 mm 2,40 65,17 
no - 45 mm 1,98 57,45 

 
 



NUMERICAL SIMULATIONS   58 

the thinner ones. The omission of the 45 mm thick head joints meant growth of limit 
displacement, but resistance of the structure decreased considerably. The wall 
without 10 mm thick head joints shows similar properties, but in a way that is more 
favorable, because limit displacement increased even more than in the case of 
omitted 45 mm joints, and the wall is also able to withstand higher load, but still 
lower than in the case of the full joints. The crack distribution of both cases is shown 
in Figure 5.19. 
     In summary, omitting the head joints in the case of the wall with thin joints has no 
positive effect. However, in the case of the wall with thick joints, the omission of the 
thin head joints can be helpful. If we need a structure that is more compliant and, at 
the same time, we know that load-bearing capacity of such a weakened structure is 
still high enough, then the wall with 45 mm thick bed joints and without 10 mm head 
joints is a wise choice.  
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Fig. 5.18: Shear walls with 45 mm thick bed joints and with/without head joints 
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(a) without 45 mm thick head joints                                          (b) without 10 mm thick head joints 
 
Fig. 5.19: Crack pattern of wall with 45 mm thick bed joints without head joints 
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5.4 Influence of Material Properties 
     In this section, an impact of different material properties on behavior of the walls 
is investigated. 
     Now, the walls have always the same dimensions, i.e. all the walls have 45 mm 
thick joints and no joints are omitted, as shown in Figure 5.20, and it is not changed 
all through the section. 
     The same bricks with the same properties as in previous section are used, but 
properties of the cocciopesto mortar are changed from case to case, as described next. 
 
 

 
 
Fig. 5.20: Shear wall with 45 mm thick joints 
 

5.4.1 Young’s Modulus 

     Default value of the modulus is 2200 MPa. This value was being gradually 
lowered to 2000, 1800, 1600 and finally to 1400 MPa. To better see the trend of the 
response of the wall with different moduli, the value 3000 MPa was added. 
     Curves of all the analyses are plotted in Figure 5.21. Apparently, the shapes of the 
curves are absolutely the same. Just inclinations are different, but it is not surprising, 
if we take into account that the Young’s modulus determines the angle between the 
horizontal axis and the elastic curve. However, also the peak values change. The 
summary of the peak coordinates, in dependence on the Young’s modulus, is in the 
Table 5.8. 
     The tendency is clear. With decreasing elastic modulus, the limit displacement 
increases, while load-bearing capacity decreases. It can be interpreted by means of 
the internal strain energy again. The higher is the Young’s modulus, the faster the  
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Fig. 5.21: Shear walls with different values of Young’s modulus 
 
 
curve reaches higher values of loading. If the product of stress and strain should be 
kept constant, the limit displacement must be inevitably lower.  
     Of course, there are small deviations not matching the explanation, especially in 
the case of the values of moduli 2200 MPa and 2000 MPa, where the maximum loads 
     
 
Table 5.8: Summary of peak values for different Young’s moduli 
 

Young's  
modulus E 

[MPa] 

Displacement 
[mm] 

Load 
[kN] 

3000 1,61 88,89 
2200 1,74 83,85 
2000 1,74 80,47 
1800 1,75 76,86 
1600 1,78 73,63 
1400 1,82 70,05 
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differ, whereas the limit displacements are the same. Nevertheless, the difference of 
their load-displacement products is just 4%, which is not significant and can be 
caused by many irrelevant factors. Therefore, it is negligible. 
     Figures of the cracked walls are very similar for all moduli, therefore just one 
representative Figure 5.22 for E=2200 MPa is shown.  
 
 

 
 
Fig. 5.22: Crack pattern of wall with 45 mm thick joints and Young’s modulus 2200 MPa 
 

5.4.2 Fracture Energy 

     It was discussed in Section 5.3.1 that the sharp peak of the wall with 45 mm thick 
joints is caused by reaching of the fracture energy, which did not allow the wall to 
exhaust its load-bearing capacity. On the contrary, peak of the wall with 10 mm thick 
joints was rounded, due to gradual cracking, because the strength was exceeded. 
This explanation can be now verified by changing values of the fracture energy. 
      Default value of the fracture energy is 19,55 Jm-2. It was then increased 5 times 
and 10 times and also decreased 5 times and 10 times. 
     Graphs of the analyses are plotted in Figure 5.23. As expected, the shape of the 
peak really changed. When the fracture energy was increased, either 5 or 10 times, it 
became so high that the limit of a load-bearing capacity was reached sooner than the 
limit of fracture energy, causing a gradual cracking of the wall. The fact that the peak 
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stays sharp, if the fracture energy is either 5 or 10 times lowered, only confirms the 
idea of the different reasons of collapse.  
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Fig. 5.23: Shear walls with different values of fracture energy 
 
 
     The values of the individual peaks are gathered in Table 5.9. Both the limit 
displacement and limit load increased quite significantly. It actually shows where the 
material strength limits of the structure are, if it is not limited by the fracture energy.  
     After first glance, it may seem strange that limit displacement of Gfx10 is lower 
than for Gfx5, but it can be easily explained. There is a break on the Gfx5 curve in an 
initial phase of loading, approximately at 28 kN. It is caused by first cracks, but the 
Gfx10 curve is smooth in this area. It is clear, because in the case of Gfx10, the energy 
necessary for first cracks was so high that it was not reached. As a result of this 
difference, the Gfx10 curve is, for the most of the time, higher than the Gfx5 curve. 
Nevertheless, if the areas below the graphs should be equal, than the value of the 
limit displacement of the Gfx10 curve must be lower. 
     If the value of the fracture energy is lowered, the curve develops in the same 
manner, as in the case of the default fracture energy, also the shape of the peak is still 
sharp, just the collapse comes sooner. Further lowering of the fracture energy plays  
a negligible role, as you can see from both graphs and table. 
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Table 5.9: Summary of peak values for different fracture energies 
 

Fracture 
energy Gf 

[Jm-2] 
Displacement 

[mm] 
Load 
[kN] 

Gfx10 2,19 103,30 
Gfx5 2,27 102,80 

Gf=19,55 1,74 83,85 
Gfx0,2 1,66 80,62 
Gfx0,1 1,67 80,60 

 
 
     Crack patterns are relatively different for each value of the fracture energy. 
Therefore, there are depicted two representatives of extreme values, i.e. Gfx0,1 and 
Gfx10 in Figure 5.24. We can see that the cracks are really distributed differently. In 
the case of Gfx0,1 the diagonal is obviously decisive. Whereas in the case of Gfx10 the 
cracks are distributed more evenly meaning that the material is more utilized. 
 
 

 
 

  (a) fracture energy Gf x 0,1                                      (b) fracture energy Gf x 10 
 
Fig. 5.24: Crack pattern of wall with 45 mm thick joints and different fracture energies 
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5.4.3 Tensile Strength 

     Since materials like concrete or mortar are known for their low tensile strengths, it 
is possible to expect that changes in the strength will have a certain effect on the 
overall structural behavior. The default value is 0,7 MPa. It was then increased to 0,9 
and 1,1 MPa and also decreased to 0,5 and 0,3 MPa. 
     Results of the analyses are plotted in Figure 5.25. All the curves have very similar 
shape with the same inclination and only the peak values differ. However, we can 
see that the peak values change considerably, as the tensile strength changes. By 
increasing the default value about 0,4 MPa only, the peak moved higher and further, 
in the coordinate axes, than in any other case of material property or geometry 
change, and this is also similarly valid vice versa. If the default value is lowered 
about 0,4 MPa only, the limit properties of the wall are very unfavorable.  
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Fig. 5.25: Shear walls with different values of tensile strength 
 
 
     Table 5.10 illustrates the changes of the peak values by concrete numbers. From 
this, a conclusion can be drawn that the tensile strength influences the behavior very 
significantly. 
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Table 5.10: Summary of peak values for different tensile strengths 
 

Tensile 
strength ft 

[MPa] 

Displacement 
[mm] 

Load 
[kN] 

1,1 2,49 111,90 
0,9 2,17 102,90 
0,7 1,74 83,85 
0,5 1,46 68,48 
0,3 1,32 60,90 

 
 
     Crack patterns also change together with the change of the tensile strength. In the 
case of a high tensile strength (i.e. 1,1 MPa), the collapse comes due to severe 
cracking of the two most exposed joints. As the tensile strength of the mortar is high, 
even a crack in a brick in the left top corner appears, as you can see in Figure 5.26 (a).  
     When a low value of the tensile strength (i.e. 0,3 MPa) is set, the wall shows many 
cracks spread through the joints, because even small tension is enough to initiate 
cracking. This is illustrated in Figure 5.26 (b). 
 
 

 
 
 
 
 

    (a) tensile strength 1,1 MPa                                   (b) tensile strength 0,3 MPa 
 
Fig. 5.26: Crack pattern of wall with 45 mm thick joints and different tensile strengths 
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5.4.4 Compressive Strength 

     It is expected that the compressive strength will not influence the response of the 
wall in such extent as the tensile strength. The default compressive strength is 5 MPa, 
which was lowered to 3 MPa and then increased to 7, 9, and 11 MPa for next 
analyses.  
     Graphs of the analyses are depicted in Figure 5.27. The effect of the changed 
strengths is even lower than the expectations. We can see that all the curves, 
excepting 3 MPa, are extremely similar, almost identical.  
     This fact is just confirmed by Table 5.11, where the similarity of the peak values 
can be easily compared. 
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Fig. 5.27: Shear walls with different values of compressive strength 

 
 

     When the compressive strength is equal to 3 MPa, the mortar is weak in 
compression and therefore even a relatively low compression causes a crushing of 
the mortar. It makes the wall more compliant, which is illustrated by a slightly 
different shape of the corresponding curve. 
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Table 5.11: Summary of peak values for different compressive strengths 
 

Tensile 
strength fc 

[MPa] 

Displacement 
[mm] 

Load 
[kN] 

11 1,76 86,10 
9 1,75 85,50 
7 1,74 85,02 
5 1,74 83,85 
3 1,70 76,85 

 
 
     Crack patterns are very similar for all values of the compressive strengths, 
therefore just one representative Figure 5.28 for fc=5 MPa is shown.  
 
 

 
 
Fig. 5.28: Crack pattern of wall with 45 mm thick joints and compressive strength 5 MPa 
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6 Conclusion 

         It is clear now that the response of the masonry structures is, in most cases, 
strongly influenced by the geometry and material properties. By performing 
systematic numerical studies, the following geometrical parameters were found to be 
dominant: 
 

 increase of the joint thickness from 10 mm to 45 mm rises the limit 
displacement significantly, while the load-bearing capacity changes negligibly 
and the collapse is more brittle 

 omitting the head joints in the case of the wall with 10 mm thick joints 
decreases both the limit displacement and the load-bearing capacity 

 omission of the 10 mm head joints in the wall with 45 mm thick bed joints 
increases the limit displacement and ductility, whereas the load-bearing 
capacity decreases 

 
The output of the analyses with changing material properties is: 
 

 with higher Young’s modulus the load-bearing capacity is higher too, but the 
limit displacement decreases, nevertheless the difference in results is not 
substantial 

 higher values of fracture energy considerably increases both the limit 
displacement and the load-bearing capacity, also the failure mode changes to 
more gradual 

 the increased tensile strength results in higher limit displacement as well as 
the load-bearing capacity to a bigger extent than any other change of the 
material property  

 difference in the compressive strength causes negligible changes in the limit 
displacement and the load-bearing capacity, the load-displacement curves are 
almost identical 

 
     The above-mentioned findings prove that the role of the thick joints in the 
behavior of the masonry structures is positive. More deformable but still strong 
structure is obtained, at least in the case of walls subjected to shear. The findings also 
reveal that omission of the head joints in wall with thin joints is useless. However, 
omitting the 10 mm head joints in the wall with 45 mm thick bed joints is reasonable 
if the deformability and ductility are more important than the load-bearing capacity. 
They also demonstrate that the fracture energy and tensile strength are worth 
changing in order to get better structural response. 
     For further analyses, it would be better to have available experimental data and  
a powerful computer enabling a use of finer meshes. Afterwards, it would be 
interesting to perform the fitting of the data obtained by the numerical analysis to  
the experimental ones by changing several material parameters at once.  
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